

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

&

AB TECHNOLOGIES, NAGERCOIL

VALUE ADDED COURSE

ON

MACHINE LAERNING USING PYTHON

COURSE MATERIAL

1

 INTRODUCTION TO MACHINE LEARNING

 What Is Machine Learning?

Machine learning is programming computers to optimize a performance criterion using

example data or past experience. We have a model defined up to some parameters, and learning

is the execution of a computer program to optimize the parameters of the model using the training

data or past experience. The model may be predictive to make predictions in the future, or

descriptive to gain knowledge from data, or both.

Arthur Samuel, an early American leader in the field of computer gaming and artificial

intelligence, coined the term “Machine Learning” in 1959 while at IBM. He defined machine

learning as “the field of study that gives computers the ability to learn without being explicitly

programmed.” However, there is no universally accepted definition for machine learning.

Different authors define the term differently.

Definition of learning

Definition

A computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P, if its performance at tasks T, as measured by P, improves

with experience E.

Examples

i) Handwriting recognition learning problem

• Task T: Recognizing and classifying handwritten words within images

• Performance P: Percent of words correctly classified

• Training experience E: A dataset of handwritten words with given classifications

ii) A robot driving learning problem

• Task T: Driving on highways using vision sensors

• Performance measure P: Average distance traveled before an error

• training experience: A sequence of images and steering commands recorded

while observing a human driver

iii) A chess learning problem

• Task T: Playing chess

2

• Performance measure P: Percent of games won against opponents

• Training experience E: Playing practice games against itself

Definition

A computer program which learns from experience is called a machine learning

program or simply a learning program. Such a program is sometimes also referred to as a learner.

 Components of Learning

Basic components of learning process

The learning process, whether by a human or a machine, can be divided into four

components, namely, data storage, abstraction, generalization and evaluation. Figure 1.1

illustrates the various components and the steps involved in the learning process.

1. Data storage

Facilities for storing and retrieving huge amounts of data are an important component of

the learning process. Humans and computers alike utilize data storage as a foundation for

advanced reasoning.

• In a human being, the data is stored in the brain and data is retrieved using electrochemical signals.

• Computers use hard disk drives, flash memory, random access memory and similar devices to

store data and use cables and other technology to retrieve data.

2. Abstraction

The second component of the learning process is known as abstraction.

Abstraction is the process of extracting knowledge about stored data. This involves creating

general concepts about the data as a whole. The creation of knowledge involves application of

known models and creation of new models.

The process of fitting a model to a dataset is known as training. When the model has been trained,

the data is transformed into an abstract form that summarizes the original information.

3

3. Generalization

The third component of the learning process is known as generalization.

The term generalization describes the process of turning the knowledge about stored data into a

form that can be utilized for future action. These actions are to be carried out on tasks that are

similar, but not identical, to those what have been seen before. In generalization, the goal is to

discover those properties of the data that will be most relevant to future tasks.

4. Evaluation

Evaluation is the last component of the learning process.

It is the process of giving feedback to the user to measure the utility of the learned

knowledge. This feedback is then utilised to effect improvements in the whole learning process

Applications of machine learning

Application of machine learning methods to large databases is called data mining. In data

mining, a large volume of data is processed to construct a simple model with valuable use, for

example, having

high predictive accuracy.

The following is a list of some of the typical applications of machine learning.

1. In retail business, machine learning is used to study consumer behavior.

2. In finance, banks analyze their past data to build models to use in credit applications,

fraud detection, and the stock market.

3. In manufacturing, learning models are used for optimization, control, and troubleshooting.

4

4. In medicine, learning programs are used for medical diagnosis.

5. In telecommunications, call patterns are analyzed for network optimization and

maximizing the quality of service.

6. In science, large amounts of data in physics, astronomy, and biology can only be analyzed

fast enough by computers. The World Wide Web is huge; it is constantly growing and

searching for relevant information cannot be done manually.

7. In artificial intelligence, it is used to teach a system to learn and adapt to changes so that

the system designer need not foresee and provide solutions for all possible situations.

8. It is used to find solutions to many problems in vision, speech recognition, and robotics.

9. Machine learning methods are applied in the design of computer-controlled vehicles to

steer correctly when driving on a variety of roads.

10. Machine learning methods have been used to develop programmes for playing games such

as chess, backgammon and Go.

 Learning Models

Machine learning is concerned with using the right features to build the right

models that achieve the right tasks. The basic idea of Learning models has divided into three

categories.

For a given problem, the collection of all possible outcomes represents the sample space or

instance space.

 Using a Logical expression. (Logical models)

 Using the Geometry of the instance space. (Geometric models)

 Using Probability to classify the instance space. (Probabilistic models)

 Grouping and Grading

 Logical models

Logical models use a logical expression to divide the instance space into segments and

hence construct grouping models. A logical expression is an expression that returns a Boolean

value, i.e., a True or False outcome. Once the data is grouped using a logical expression, the data

is divided into homogeneous groupings for the problem we are trying to solve. For example, for

5

a classification problem, all the instances in the group belong to one class.

There are mainly two kinds of logical models: Tree models and Rule models.

Rule models consist of a collection of implications or IF-THEN rules. For tree-based models, the

‘if-part’ defines a segment and the ‘then-part’ defines the behaviour of the model for this segment.

Rule models follow the same reasoning.

Logical models and Concept learning

To understand logical models further, we need to understand the idea of Concept

Learning. Concept Learning involves learning logical expressions or concepts from examples.

The idea of Concept Learning fits in well with the idea of Machine learning, i.e., inferring a general

function from specific training examples. Concept learning forms the basis of both tree-based and

rule-based models. More formally, Concept Learning involves acquiring the definition of a general

category from a given set of positive and negative training examples of the category. A Formal

Definition for Concept Learning is “The inferring of a Boolean-valued function from training

examples of its input and output.” In concept learning, we only learn a description for the positive

class and label everything that doesn’t satisfy that description as negative.

The following example explains this idea in more detail.

6

A Concept Learning Task called “Enjoy Sport” as shown above is defined by a set of data

from some example days. Each data is described by six attributes. The task is to learn to predict

the value of Enjoy Sport for an arbitrary day based on the values of its attribute values. The

problem can be represented by a series of hypotheses. Each hypothesis is described by a

conjunction of constraints on the attributes. The training data represents a set of positive and

negative examples of the target function. In the example above, each hypothesis is a vector of six

constraints, specifying the values of the six attributes – Sky, AirTemp, Humidity, Wind, Water,

and Forecast. The training phase involves learning the set of days (as a conjunction of attributes)

for which Enjoy Sport = yes.

Thus, the problem can be formulated as:

 Given instances X which represent a set of all possible days, each described by the attributes:

o Sky – (values: Sunny, Cloudy, Rainy),

o AirTemp – (values: Warm, Cold),

o Humidity – (values: Normal, High),

o Wind – (values: Strong, Weak),

o Water – (values: Warm, Cold),

o Forecast – (values: Same, Change).

Try to identify a function that can predict the target variable Enjoy Sport as yes/no, i.e., 1 or 0.

 Geometric models

In the previous section, we have seen that with logical models, such as decision trees, a logical

expression is used to partition the instance space. Two instances are similar when they end up in

the same logical segment. In this section, we consider models that define similarity by considering

the geometry of the instance space. In Geometric models, features could be described as points in

two dimensions (x- and y-axis) or a three-dimensional space (x, y, and z). Even when features are

not

https://web.cs.hacettepe.edu.tr/~ilyas/Courses/BIL712/lec01-conceptLearning.pdf

7

intrinsically geometric, they could be modelled in a geometric manner (for example, temperature

as a function of time can be modelled in two axes). In geometric models, there are two ways we

could impose similarity.

 We could use geometric concepts like lines or planes to segment (classify) the instance

space. These are called Linear models.

 Alternatively, we can use the geometric notion of distance to represent similarity. In this

case, if two points are close together, they have similar values for features and thus can be

classed as similar. We call such models as Distance-based models.

Linear models

Linear models are relatively simple. In this case, the function is represented as a linear

combination of its inputs. Thus, if x1 and x2 are two scalars or vectors of the same dimension

and a and b are arbitrary scalars, then ax1 + bx2 represents a linear combination of x1 and x2. In the

simplest case where f(x) represents a straight line, we have an equation of the form f (x)

= mx + c where c represents the intercept and m represents the slope.

Linear models are parametric, which means that they have a fixed form with a small number of

numeric parameters that need to be learned from data. For example, in f (x) = mx + c, m and c are

the parameters that we are trying to learn from the data. This technique is different from tree or

rule models, where the structure of the model (e.g., which features to use in the tree, and where)

is not fixed in advance.

https://www.quora.com/Why-is-a-decision-tree-considered-a-non-parametric-model
https://www.quora.com/Why-is-a-decision-tree-considered-a-non-parametric-model

8

Linear models are stable, i.e., small variations in the training data have only a limited impact on

the learned model. In contrast, tree models tend to vary more with the training data, as the

choice of a different split at the root of the tree typically means that the rest of the tree is different

as well. As a result of having relatively few parameters, Linear models have low variance and

high bias. This implies that Linear models are less likely to overfit the training data than some

other models. However, they are more likely to underfit. For example, if we want to learn the

boundaries between countries based on labelled data, then linear models are not likely to give a

good approximation.

Distance-based models

Distance-based models are the second class of Geometric models. Like Linear models,

distance- based models are based on the geometry of data. As the name implies, distance-based

models work on the concept of distance. In the context of Machine learning, the concept of

distance is not based on merely the physical distance between two points. Instead, we could think

of the distance between two points considering the mode of transport between two points.

Travelling between two cities by plane covers less distance physically than by train because a

plane is unrestricted. Similarly, in chess, the concept of distance depends on the piece used – for

example, a Bishop can move diagonally. Thus, depending on the entity and the mode of travel,

the concept of distance can be experienced differently. The distance metrics commonly used are

Euclidean, Minkowski, Manhattan, and Mahalanobis.

Distance is applied through the concept of neighbours and exemplars. Neighbours are points in

proximity with respect to the distance measure expressed through exemplars. Exemplars are

either centroids that find a centre of mass according to a chosen distance metric or medoids that

find the most centrally located data point. The most commonly used centroid is the arithmetic

mean, which minimises squared Euclidean distance to all other points.

9

Notes:

 The centroid represents the geometric centre of a plane figure, i.e., the arithmetic mean

position of all the points in the figure from the centroid point. This definition extends to

any object in n-dimensional space: its centroid is the mean position of all the points.

 Medoids are similar in concept to means or centroids. Medoids are most commonly used

on data when a mean or centroid cannot be defined. They are used in contexts where the

centroid is not representative of the dataset, such as in image data.

Examples of distance-based models include the nearest-neighbour models, which use the

training data as exemplars – for example, in classification. The K-means clustering algorithm

also uses exemplars to create clusters of similar data points.

 Probabilistic models

The third family of machine learning algorithms is the probabilistic models. We have seen

before that the k-nearest neighbour algorithm uses the idea of distance (e.g., Euclidian distance)

to classify entities, and logical models use a logical expression to partition the instance space. In

this section, we see how the probabilistic models use the idea of probability to classify new

entities.

Probabilistic models see features and target variables as random variables. The process of

modelling represents and manipulates the level of uncertainty with respect to these variables.

There are two types of probabilistic models: Predictive and Generative. Predictive probability

models use the idea of a conditional probability distribution P (Y |X) from which Y can be

predicted from X. Generative models estimate the joint distribution P (Y, X). Once we know the

joint distribution for the generative models, we can derive any conditional or marginal distribution

involving the same variables. Thus, the generative model is capable of creating new data points

and their labels, knowing the joint probability distribution. The joint distribution looks for a

relationship between two variables. Once this relationship is inferred, it is possible to infer new

data points.

Naïve Bayes is an example of a probabilistic classifier.

10

We can do this using the Bayes rule defined as

The Naïve Bayes algorithm is based on the idea of Conditional Probability. Conditional

probability is based on finding the probability that something will happen, given that something

else has already happened. The task of the algorithm then is to look at the evidence and to

determine the likelihood of a specific class and assign a label accordingly to each entity.

Some broad categories of models:

Geometric models Probabilistic models Logical models

E.g. K-nearest neighbors,

linear regression, support

vector machine, logistic

regression, …

Naïve Bayes, Gaussian process

regression, conditional random

field, …

Decision tree, random forest, …

11

 Grouping and Grading

Grading vs grouping is an orthogonal categorization to geometric-probabilistic-logical-compositional.

 Grouping models break the instance space up into groups or segments and in each

segment apply a very simple method (such as majority class).

o E.g. decision tree, KNN.

 Grading models form one global model over the instance space.

o E.g. Linear classifiers – Neural networks

 Designing a Learning System

For any learning system, we must be knowing the three elements — T (Task), P

(Performance Measure), and E (Training Experience). At a high level, the process of learning

system looks as below.

The learning process starts with task T, performance measure P and training experience E and

objective are to find an unknown target function. The target function is an exact knowledge to be

learned from the training experience and its unknown. For example, in a case of credit approval,

the learning system will have customer application records as experience and task would be to

classify whether the given customer application is eligible for a loan. So in this case, the training

examples can be represented as

(x1,y1)(x2,y2)..(xn,yn) where X represents customer application details and y represents the

status of credit approval.

12

With these details, what is that exact knowledge to be learned from the training experience?

So the target function to be learned in the credit approval learning system is a mapping function

f:X →y. This function represents the exact knowledge defining the relationship between input

variable X and output variable y.

Design of a learning system

Just now we looked into the learning process and also understood the goal of the learning. When

we want to design a learning system that follows the learning process, we need to consider a few

design choices. The design choices will be to decide the following key components:

1. Type of training experience

2. Choosing the Target Function

3. Choosing a representation for the Target Function

4. Choosing an approximation algorithm for the Target Function

5. The final Design

We will look into the game - checkers learning problem and apply the above design choices. For

a checkers learning problem, the three elements will be,

1. Task T: To play checkers

2. Performance measure P: Total percent of the game won in the tournament.

3. Training experience E: A set of games played against itself

Type of training experience

During the design of the checker's learning system, the type of training experience

available for a learning system will have a significant effect on the success or failure of the

learning.

1. Direct or Indirect training experience — In the case of direct training experience, an

individual board states and correct move for each board

13

state are given. In case of indirect training experience, the move sequences for a

game and the final result (win, loss or draw) are given for a number of games. How to assign

credit or blame to individual moves is the credit assignment problem.

2. Teacher or Not — Supervised — The training experience will be labeled, which means, all

the board states will be labeled with the correct move. So the learning takes place in the

presence of a supervisor or a

teacher. Unsupervised — The training experience will be unlabeled, which means, all the board

states will not have the moves. So the learner generates random games and plays against itself

with no supervision or teacher involvement.

Semi-supervised — Learner generates game states and asks the teacher for help in

finding the correct move if the board state is confusing.

3. Is the training experience good — Do the training examples represent the distribution of

examples over which the final system performance will be measured? Performance is best

when training examples and test examples are from the same/a similar distribution.

The checker player learns by playing against oneself. Its experience is indirect. It may not

encounter moves that are common in human expert play. Once the proper training experience is

available, the next design step will be choosing the Target Function.

 Choosing the Target Function

When you are playing the checkers game, at any moment of time, you make a decision on

choosing the best move from different possibilities. You think and apply the learning that you

have gained from the experience. Here the learning is, for a specific board, you move a checker

such that your board state tends towards the winning situation. Now the same learning has to be

defined in terms of the target function.

Here there are 2 considerations — direct and indirect experience.

 During the direct experience, the checkers learning system, it needs only to learn how to

14

choose the best move among some large search space. We need to find a target function

that will help us choose the best move among alternatives. Let us call this function Choose

Move and use the notation Choose Move : B →M to indicate that this function accepts as

input any board from the set of legal board states B and produces as output some move from

the set of legal moves M.

 When there is an indirect experience, it becomes difficult to learn such function. How

about assigning a real score to the board state.

So the function be V : B →R indicating that this accepts as input any board from the set of legal

board states B and produces an output a real score. This function assigns the higher scores to better

board states.

If the system can successfully learn such a target function V, then it can easily use it to select the

best move from any board position. Let us therefore define the target value V(b) for an arbitrary

board state b in B, as follows:

1. if b is a final board state that is won, then V(b) = 100

2. if b is a final board state that is lost, then V(b) = -100

3. if b is a final board state that is drawn, then V(b) = 0

4. if b is a not a final state in the game, then V (b) = V (b’), where b’ is the best final board state

that can be achieved starting from b and playing optimally until the end of the game.

The (4) is a recursive definition and to determine the value of V(b) for a particular board state, it

performs the search ahead for the optimal line of play, all the way to the end of the game. So this

definition is not efficiently computable by our checkers playing program, we say that it is a

nonoperational definition.

15

The goal of learning, in this case, is to discover an operational description of V ; that is, a

description that can be used by the checkers-playing program to evaluate states and select

moves within realistic time bounds.

It may be very difficult in general to learn such an operational form of V perfectly. We expect

learning algorithms to acquire only some approximation to the target function ^V.

 Choosing a representation for the Target Function

Now that we have specified the ideal target function V, we must choose a representation

that the learning program will use to describe the function ^V that it will learn. As with earlier

design choices, we again have many options. We could, for example, allow the program to

represent using a large table with a distinct entry specifying the value for each distinct board state.

Or we could allow it to represent using a collection of rules that match against features of the board

state, or a quadratic polynomial function of predefined board features, or an artificial

neural network. In general, this choice of representation involves a crucial tradeoff. On one hand,

we wish to pick a very expressive representation to allow representing as close an approximation

as possible to the ideal target function V.

On the other hand, the more expressive the representation, the more training data the

program will require in order to choose among the alternative hypotheses it can represent. To keep

the discussion brief, let us choose a simple representation:

for any given board state, the function ^V will be calculated as a linear combination of the

following board features:

 x1(b) — number of black pieces on board b

 x2(b) — number of red pieces on b

 x3(b) — number of black kings on b

 x4(b) — number of red kings on b

 x5(b) — number of red pieces threatened by black (i.e., which can be taken on black’s next turn)

 x6(b) — number of black pieces threatened by red

^V = w0 + w1 · x1(b) + w2 · x2(b) + w3 · x3(b) + w4 · x4(b) +w5 · x5(b) + w6 · x6(b)

16

Where w0 through w6 are numerical coefficients or weights to be obtained by a learning

algorithm. Weights w1 to w6 will determine the relative importance of different board features.

Specification of the Machine Learning Problem at this time — Till now we worked on

choosing the type of training experience, choosing the target function and its representation. The

checkers learning task can be summarized as below.

 Task T : Play Checkers

 Performance Measure : % of games won in world tournament

 Training Experience E : opportunity to play against itself

 Target Function : V : Board → R

 Target Function Representation : ^V = w0 + w1 · x1(b) + w2 · x2(b) + w3 · x3(b) + w4

· x4(b) +w5 · x5(b) + w6 · x6(b)

The first three items above correspond to the specification of the learning task,whereas the final

two items constitute design choices for the implementation of the learning program.

 Choosing an approximation algorithm for the Target Function

Generating training data —

To train our learning program, we need a set of training data, each describing a specific board state

b and the training value V_train (b) for b. Each training example is an ordered pair <b,V_train(b)>

For example, a training example may be <(x1 = 3, x2 = 0, x3 = 1, x4 = 0, x5 = 0, x6 = 0), +100">.

This is an example where black has won the game since x2 = 0 or red has no remaining pieces.

However, such clean values of V_train (b) can be obtained only for board value b that are clear win,

loss or draw.

In above case, assigning a training value V_train(b) for the specific boards b that are clean win,

loss or draw is direct as they are direct training experience. But in the case of indirect training

experience, assigning a training value V_train(b) for the intermediate boards is difficult. In such

case, the training values are updated using temporal difference learning. Temporal difference

(TD) learning is a concept central to reinforcement learning, in which learning happens

through the iterative correction of your estimated returns towards a more accurate target

return.

Let Successor(b) denotes the next board state following b for which it is again the program’s turn

to move. ^V is the learner’s current approximation to V. Using these information, assign the

training value of V_train(b) for any intermediate board state b as below :

17

V_train(b) ← ̂ V(Successor(b))

Adjusting the weights

Now its time to define the learning algorithm for choosing the weights and best fit the set

of training examples. One common approach is to define the best hypothesis as that which

minimizes the squared error E between the training values and the values predicted by the

hypothesis ^V.

The learning algorithm should incrementally refine weights as more training examples become

available and it needs to be robust to errors in training data Least Mean Square (LMS) training rule

is the one training algorithm that will adjust weights a small amount in the direction that reduces

the error.

The LMS algorithm is defined as follows:

 Final Design for Checkers Learning system

The final design of our checkers learning system can be naturally described by four

distinct program modules that represent the central components in many learning systems.

1. The performance System — Takes a new board as input and outputs a trace of the game it

played against itself.

2. The Critic — Takes the trace of a game as an input and outputs a set of training examples

of the target function.

3. The Generalizer — Takes training examples as input and outputs a hypothesis that

estimates the target function. Good generalization to new cases is crucial.

4. The Experiment Generator — Takes the current hypothesis (currently learned function) as

input and outputs a new problem (an initial board state) for the performance system to

explore.

18

Final design of the checkers learning program.

 Types of Learning

In general, machine learning algorithms can be classified into three types.

 Supervised learning

 Unsupervised learning

 Reinforcement learning

Supervised learning

A training set of examples with the correct responses (targets) is provided and, based on

this training set, the algorithm generalises to respond correctly to all possible inputs. This is also

called learning from exemplars. Supervised learning is the machine learning task of learning a

function that maps an input to an output based on example input-output pairs.

In supervised learning, each example in the training set is a pair consisting of an input

object (typically a vector) and an output value. A supervised learning algorithm analyzes the

training data and produces a function, which can be used for mapping new examples. In the

optimal case, the function will correctly determine the class labels for unseen instances. Both

classification and regression problems are supervised learning problems. A wide range of

supervised learning algorithms are available, each with its strengths and weaknesses. There is no

single learning algorithm that works best on all supervised learning problems.

19

Figure 1.4: Supervised learning

Remarks

A “supervised learning” is so called because the process of an algorithm learning from the

training dataset can be thought of as a teacher supervising the learning process. We know the

correct answers (that is, the correct outputs), the algorithm iteratively makes predictions on the

training data and is corrected by the teacher. Learning stops when the algorithm achieves an

acceptable level of performance.

Example

Consider the following data regarding patients entering a clinic. The data consists of the

gender and age of the patients and each patient is labeled as “healthy” or “sick”.

Unsupervised learning

Correct responses are not provided, but instead the algorithm tries to identify similarities

between the inputs so that inputs that have something in common are categorised together. The

statistical approach to unsupervised learning is

20

known as density estimation.

Unsupervised learning is a type of machine learning algorithm used to draw inferences

from datasets consisting of input data without labeled responses. In unsupervised learning

algorithms, a classification or categorization is not included in the observations. There are no

output values and so there is no estimation of functions. Since the examples given to the learner

are unlabeled, the accuracy of the structure that is output by the algorithm cannot be evaluated.

The most common unsupervised learning method is cluster analysis, which is used for

exploratory data analysis to find hidden patterns or grouping in data.

Example

Consider the following data regarding patients entering a clinic. The data consists of the

gender and age of the patients.

Based on this data, can we infer anything regarding the patients entering the clinic?

Reinforcement learning

This is somewhere between supervised and unsupervised learning. The algorithm gets told

when the answer is wrong, but does not get told how to correct it. It has to explore and try out

different possibilities until it works out how to get the answer right. Reinforcement learning is

sometime called learning with a critic because of this monitor that scores the answer, but does not

suggest improvements.

Reinforcement learning is the problem of getting an agent to act in the world so as to

maximize its rewards. A learner (the program) is not told what actions to take as in most forms of

machine learning, but instead must discover which actions yield the most reward by trying them.

In the most interesting and challenging cases, actions may affect not only the immediate reward

but also the next situations and, through that, all subsequent rewards.

21

Example

Consider teaching a dog a new trick: we cannot tell it what to do, but we can reward/punish

it if it does the right/wrong thing. It has to find out what it did that made it get the

reward/punishment. We can use a similar method to train computers to do many tasks, such as

playing backgammon or chess, scheduling jobs, and controlling robot limbs. Reinforcement

learning is different from supervised learning. Supervised learning is learning from examples

provided by a knowledgeable expert.

 PERSPECTIVES AND ISSUES IN MACHINE LEARNING

Perspectives in Machine Learning

One useful perspective on machine learning is that it involves searching a very large space

of possible hypotheses to determine one that best fits the observed data and any prior knowledge

held by the learner.

For example, consider the space of hypotheses that could in principle be output by the above

checkers learner. This hypothesis space consists of all evaluation functions that can be represented

by some choice of values for the weights wo through w6. The learner's task is thus to search

through this vast space to locate the hypothesis that is most consistent with the available training

examples. The LMS algorithm for fitting weights achieves this goal by iteratively tuning the

weights, adding a correction to each weight each time the hypothesized evaluation function

predicts a value that differs from the training value. This algorithm works well when the

hypothesis representation considered by the learner defines a continuously parameterized space of

potential hypotheses.

Many of the chapters in this book present algorithms that search a hypothesis space defined

by some underlying representation (e.g., linear functions, logical descriptions, decision trees,

artificial neural networks). These different hypothesis representations are appropriate for learning

different kinds of target functions. For each of these hypothesis representations, the corresponding

learning algorithm takes advantage of a different underlying structure to organize the search

through the hypothesis space.

22

Throughout this book we will return to this perspective of learning as a search problem in

order to characterize learning methods by their search strategies and by the underlying structure

of the search spaces they explore. We will also find this viewpoint useful in formally analyzing

the relationship between the size of the hypothesis space to be searched, the number of training

examples available, and the confidence we can have that a hypothesis consistent with the training

data will correctly generalize to unseen examples.

Issues in Machine Learning

Our checkers example raises a number of generic questions about machine learning. The field of

machine learning, and much of this book, is concerned with answering questions such as the

following:

 What algorithms exist for learning general target functions from specific training

examples? In what settings will particular algorithms converge to the desired function,

given sufficient training data? Which algorithms perform best for which types of problems

and representations?

 How much training data is sufficient? What general bounds can be found to relate the

confidence in learned hypotheses to the amount of training experience and the character

of the learner's hypothesis space?

 When and how can prior knowledge held by the learner guide the process of generalizing

from examples? Can prior knowledge be helpful even when it is only approximately

correct?

 What is the best strategy for choosing a useful next training experience, and how does the

choice of this strategy alter the complexity of the learning problem?

 What is the best way to reduce the learning task to one or more function approximation

problems? Put another way, what specific functions should the system attempt to learn?

Can this process itself be automated?

 How can the learner automatically alter its representation to improve its ability to

represent and learn the target function?

 Version Spaces

Definition (Version space). A concept is complete if it covers all positive examples.

23

A concept is consistent if it covers none of the negative examples. The version space is the set of

all complete and consistent concepts. This set is convex and is fully defined by its least and most

general elements.

The key idea in the CANDIDATE-ELIMINATION algorithm is to output a description of the set of all

hypotheses consistent with the training examples

Representation

The Candidate – Elimination algorithm finds all describable hypotheses that are consistent with the observed

training examples. In order to define this algorithm precisely, we begin with a few basic definitions. First, let

us say that a hypothesis is consistent with the training examples if it correctly classifies these examples.

Definition: A hypothesis h is consistent with a set of training examples D if and only if h(x)

= c(x) for each example (x, c(x)) in D.

Note difference between definitions of consistent and satisfies

 An example x is said to satisfy hypothesis h when h(x) = 1, regardless of whether x is a

positive or negative example of the target concept.

 An example x is said to consistent with hypothesis h iff h(x) = c(x)

Definition: version space- The version space, denoted V SH, D with respect to hypothesis space

H and training examples D, is the subset of hypotheses from H consistent with the training

examples in D

 CANDIDATE-ELIMINATION Learning Algorithm

The CANDIDATE-ELIMINTION algorithm computes the version space containing all

24

hypotheses from H that are consistent with an observed sequence of training examples.

Initialize G to the set of maximally general hypotheses in H Initialize S to the set of maximally

specific hypotheses in H For each training example d, do

• If d is a positive example

• Remove from G any hypothesis inconsistent with d

• For each hypothesis s in S that is not consistent with d

• Remove s from S

• Add to S all minimal generalizations h of s such that

• h is consistent with d, and some member of G is more general than h

• Remove from S any hypothesis that is more general than another hypothesis in S

• If d is a negative example

• Remove from S any hypothesis inconsistent with d

• For each hypothesis g in G that is not consistent with d

• Remove g from G

25

• Add to G all minimal specializations h of g such that

• h is consistent with d, and some member of S is more specific than h

• Remove from G any hypothesis that is less general than another

hypothesis in G CANDIDATE- ELIMINTION algorithm using version spaces

 An Illustrative Example

Example Sky AirTemp Humidity Wind Water Forecast EnjoySpor

t

1 Sunny Warm Normal Strong Warm Same Yes

2 Sunny Warm High Strong Warm Same Yes

3 Rainy Cold High Strong Warm Change No

4 Sunny Warm High Strong Cool Change Yes

CANDIDATE-ELIMINTION algorithm begins by initializing the version space to

the set of all hypotheses in H;

Initializing the G boundary set to contain the most general hypothesis in H

G0 ?, ?, ?, ?, ?, ?

Initializing the S boundary set to contain the most specific (least general) hypothesis

S0 , , , , ,

 When the first training example is presented, the CANDIDATE-ELIMINTION algorithm

checks the S boundary and finds that it is overly specific and it fails to cover the positive

example.

 The boundary is therefore revised by moving it to the least more general hypothesis that

covers this new example

 No update of the G boundary is needed in response to this training example because Go

correctly covers this example

26

 When the second training example is observed, it has a similar effect of

generalizing S further to S2, leaving G again unchanged i.e., G2 = G1 =G0

 Consider the third training example. This negative example reveals that the G boundary

of the version space is overly general, that is, the hypothesis in G incorrectly predicts

that this new example is a positive example. The hypothesis in the G boundary must

therefore be specialized until it correctly classifies this new negative example.

27

Given that there are six attributes that could be specified to specialize G2, why are there only

three new hypotheses in G3?

For example, the hypothesis h = (?, ?, Normal, ?, ?, ?) is a minimal specialization of G2

that correctly labels the new example as a negative example, but it is not included in

G3. The reason this hypothesis is excluded is that it is inconsistent with the previously

encountered positive examples

SUPERVISED AND UNSUPERVISED LEARNING

Topics: Decision Trees: ID3, Classification and Regression Trees, Regression: Linear Regression,

Multiple Linear Regression, Logistic Regression, Neural Networks: Introduction, Perception,

Multilayer Perception, Support Vector Machines: Linear and Non-Linear, Kernel Functions, K

Nearest Neighbors. Introduction to clustering, K-means clustering, K-Mode Clustering.

Decision Tree

Introduction Decision Trees are a type of Supervised Machine Learning (that is you

explain what the input is and what the corresponding output is in the training data) where the data

is continuously split according to a certain parameter. The tree can be explained by two entities,

namely decision nodes and leaves. The leaves are the decisions or the final outcomes. And the

decision nodes are where the data is split.

An example of a decision tree can be explained using above binary tree. Let’s say you want to

predict whether a person is fit given their information like age, eating habit, and physical

activity, etc. The

28

decision nodes here are questions like ‘What’s the age?’, ‘Does he exercise?’, and ‘Does he eat a

lot of pizzas’? And the leaves, which are outcomes like either ‘fit’, or ‘unfit’. In this case this was

a binary classification problem (a yes no type problem). There are two main types of Decision

Trees:

1. Classification trees (Yes/No types)

What we have seen above is an example of classification tree, where the outcome was a variable

like ‘fit’ or ‘unfit’. Here the decision variable is Categorical.

2. Regression trees (Continuous data types)

Here the decision or the outcome variable is Continuous, e.g. a number like 123. Working Now

that we know what a Decision Tree is, we’ll see how it works internally. There are many

algorithms out there which construct Decision Trees, but one of the best is called as ID3

Algorithm. ID3 Stands for Iterative Dichotomiser 3. Before discussing the ID3 algorithm, we’ll

go through few definitions. Entropy Entropy, also called as Shannon Entropy is denoted by H(S)

for a finite set S, is the measure of the amount of uncertainty or randomness in data.

Intuitively, it tells us about the predictability of a certain event. Example, consider a coin toss

whose probability of heads is 0.5 and probability of tails is 0.5. Here the entropy is the highest

possible, since there’s no way of determining what the outcome might be. Alternatively, consider

a coin which has heads on both the sides, the entropy of such an event can be predicted perfectly

since we know beforehand that it’ll always be heads. In other words, this event has no

randomness hence it’s entropy is zero. In particular, lower values imply less uncertainty while

higher values imply high uncertainty. Information Gain Information gain is also called as

Kullback-Leibler divergence denoted by IG(S,A) for a set S is the effective change in entropy

after deciding on a particular attribute A. It measures the relative change in entropy with respect

to the independent variables

IG S, A H S H S, A

29

Alternativel

y,

IG S, A H S P x H x

i 0

where IG(S, A) is the information gain by applying feature A. H(S) is the Entropy of the entire

set, while the second term calculates the Entropy after applying the feature A, where P(x) is the

probability of event x. Let’s understand this with the help of an example Consider a piece of data

collected over the course of 14 days where the features are Outlook, Temperature, Humidity, Wind

and the outcome variable is whether Golf was played on the day. Now, our job is to build a

predictive model which takes in above 4 parameters and predicts whether Golf will be played on

the day. We’ll build a decision tree to do that using ID3 algorithm.

Day Outlook Temperature Humidity Wind Play Golf

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

n

30

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

 ID3

ID3 Algorithm will perform following tasks recursively

1. Create root node for the tree

2. If all examples are positive, return leaf node „positive‟

3. Else if all examples are negative, return leaf node „negative‟

4. Calculate the entropy of current state H(S)

5. For each attribute, calculate the entropy with respect to the attribute „x‟ denoted by H(S, x)

6. Select the attribute which has maximum value of IG(S, x)

7. Remove the attribute that offers highest IG from the set of attributes

8. Repeat until we run out of all attributes, or the decision tree has all leaf nodes.

Now we‟ll go ahead and grow the decision tree. The initial step is to calculate H(S), the Entropy

of the current state. In the above example, we can see in total there are 5 No‟s and 9 Yes‟s.

Ye

s

No Tota

l

9 5 14

31

where „x‟ are the possible values for an attribute. Here, attribute „Wind‟ takes two possible

values in the sample data, hence x = {Weak, Strong} we‟ll have to calculate:

Similarly, out of 6 Strong examples, we have 3 examples where the outcome was „Yes‟ for

Play Golf and 3 where we had „No‟ for Play Golf.

Remember, here half items belong to one class while other half belong to other. Hence we have

perfect randomness. Now we have all the pieces required to calculate the Information Gain,

Which tells us the Information Gain by considering „Wind‟ as the feature and give us

information gain of 0.048. Now we must similarly calculate the Information Gain for all the

features.

32

We can clearly see that IG(S, Outlook) has the highest information gain of 0.246, hence

we chose Outlook attribute as the root node. At this point, the decision tree looks like.

Here we observe that whenever the outlook is Overcast, Play Golf is always ‘Yes’, it’s no

coincidence by any chance, the simple tree resulted because of the highest information gain is

given by the attribute Outlook. Now how do we proceed from this point? We can simply apply

recursion, you might want to look at the algorithm steps described earlier. Now that we’ve used

Outlook, we’ve got three of them remaining Humidity, Temperature, and Wind. And, we had three

possible values of Outlook: Sunny, Overcast, Rain. Where the Overcast node already ended up

having leaf node ‘Yes’, so we’re left with two subtrees to compute: Sunny and Rain.

Table where the value of Outlook is Sunny looks like:

Temperature Humidity Wind Play Golf

Hot High Weak No

Hot High Strong No

Mild High Weak No

Cool Normal Weak Yes

Mild Normal Strong Yes

33

As we can see the highest Information Gain is given by Humidity. Proceeding in the same way with

will give us Wind as the one with highest information gain. The final Decision Tree looks

something like this. The final Decision Tree looks something like this.

Classification and Regression Trees

 Classification Trees

A classification tree is an algorithm where the target variable is fixed or categorical. The

algorithm is then used to identify the “class” within which a target variable would most likely fall.

An example of a classification-type problem would be determining who will or will not subscribe

to a digital platform; or who will or will not graduate from high school.

These are examples of simple binary classifications where the categorical dependent variable can

assume only one of two, mutually exclusive values. In other cases, you might have to predict

among a number of different variables. For instance, you may have to predict which type of

smartphone a consumer may decide to purchase.

In such cases, there are multiple values for the categorical dependent variable. Here’s what a

classic classification tree looks like

Regression Trees

A regression tree refers to an algorithm where the target variable is and the algorithm is

34

used to predict it’s value. As an example of a regression type problem, you may want to predict

the selling prices of a residential house, which is a continuous dependent variable.

This will depend on both continuous factors like square footage as well as categorical factors like

the style of home, area in which the property is located and so on.

When to use Classification and Regression Trees

Classification trees are used when the dataset needs to be split into classes which belong to the

response variable. In many cases, the classes Yes or No.

In other words, they are just two and mutually exclusive. In some cases, there may be more than

two classes in which case a variant of the classification tree algorithm is used.

Regression trees, on the other hand, are used when the response variable is continuous. For

instance, if the response variable is something like the price of a property or the temperature of

the day, a regression tree is used.

In other words, regression trees are used for prediction-type problems while classification trees

are used for classification-type problems.

How Classification and Regression Trees Work

A classification tree splits the dataset based on the homogeneity of data. Say, for instance,

there are two variables; income and age; which determine whether or not a consumer will buy a

particular kind of phone.

If the training data shows that 95% of people who are older than 30 bought the phone, the data

gets split there and age becomes a top node in the tree. This split makes the data “95% pure”.

35

Measures of impurity like entropy or Gini index are used to quantify the homogeneity of the data

when it comes to classification trees.

In a regression tree, a regression model is fit to the target variable using each of the independent

variables. After this, the data is split at several points for each independent variable.

At each such point, the error between the predicted values and actual values is squared to get “A

Sum of Squared Errors” (SSE). The SSE is compared across the variables and the variable or point

which has the lowest SSE is chosen as the split point. This process is continued recursively.

Advantages of Classification and Regression Trees

The purpose of the analysis conducted by any classification or regression tree is to create a set

of if-else conditions that allow for the accurate prediction or classification of a case.

(i) The Results are Simplistic

The interpretation of results summarized in classification or regression trees is usually fairly

simple. The simplicity of results helps in the following ways.

 It allows for the rapid classification of new observations. That’s because it is much simpler

to evaluate just one or two logical conditions than to compute scores using complex

nonlinear equations for each group.

 It can often result in a simpler model which explains why the observations are either

classified or predicted in a certain way. For instance, business problems are much easier to

explain with if-then statements than with complex nonlinear equations.

(ii) Classification and Regression Trees are Nonparametric & Nonlinear

36

The results from classification and regression trees can be summarized in simplistic if-then

conditions. This negates the need for the following implicit assumptions.

 The predictor variables and the dependent variable are linear.

 The predictor variables and the dependent variable follow some specific nonlinear link function.

 The predictor variables and the dependent variable are monotonic.

Since there is no need for such implicit assumptions, classification and regression tree methods

are well suited to data mining. This is because there is very little knowledge or assumptions that

can be made beforehand about how the different variables are related.

As a result, classification and regression trees can actually reveal relationships between these

variables that would not have been possible using other techniques.

(iii) Classification and Regression Trees Implicitly Perform Feature Selection

Feature selection or variable screening is an important part of analytics. When we use decision

trees, the top few nodes on which the tree is split are the most important variables within the set.

As a result, feature selection gets performed automatically and we don’t need to do it again.

Limitations of Classification and Regression Trees

Classification and regression tree tutorials, as well as classification and regression tree ppts, exist

in abundance. This is a testament to the popularity of these decision trees and how frequently they

are used. However, these decision trees are not without their disadvantages.

There are many classification and regression trees examples where the use of a decision tree

has not led to the optimal result. Here are some of the limitations of classification and regression

trees.

(i) Overfitting

Overfitting occurs when the tree takes into account a lot of noise that exists in the data and

comes up with an inaccurate result.

(ii) High variance

In this case, a small variance in the data can lead to a very high variance in the prediction,

thereby affecting the stability of the outcome.

(iii) Low bias

A decision tree that is very complex usually has a low bias. This makes it very difficult for

the model to incorporate any new data.

37

What is a CART in Machine Learning?

A Classification and Regression Tree (CART) is a predictive algorithm used in machine

learning. It explains how a target variable’s values can be predicted based on other values.

It is a decision tree where each fork is a split in a predictor variable and each node at the

end has a prediction for the target variable.

The CART algorithm is an important decision tree algorithm that lies at the foundation of machine

learning. Moreover, it is also the basis for other powerful machine learning algorithms like bagged

decision trees, random forest and boosted decision trees.

Summing up

The Classification and regression tree (CART) methodology is one of the oldest and most

fundamental algorithms. It is used to predict outcomes based on certain predictor variables.

They are excellent for data mining tasks because they require very little data pre-processing.

Decision tree models are easy to understand and implement which gives them a strong advantage

when compared to other analytical models.

Regression

Regression Analysis in Machine learning

Regression analysis is a statistical method to model the relationship between a dependent

(target) and independent (predictor) variables with one or more independent variables. More

specifically, Regression analysis helps us to understand how the value of the dependent variable

is changing corresponding to an independent variable when other independent variables are held

fixed. It predicts continuous/real values such as temperature, age, salary, price, etc.

We can understand the concept of regression analysis using the below example:

Example: Suppose there is a marketing company A, who does various advertisement every year

and get sales on that. The below list shows the advertisement made by the company in the last 5

years and the corresponding sales:

38

Now, the company wants to do the advertisement of $200 in the year 2019 and wants to know

the prediction about the sales for this year. So to solve such type of prediction problems in

machine learning, we need regression analysis.

Regression is a supervised learning technique which helps in finding the correlation between

variables and enables us to predict the continuous output variable based on the one or more

predictor variables. It is mainly used for prediction, forecasting, time series modeling, and

determining the causal-effect relationship between variables.

In Regression, we plot a graph between the variables which best fits the given datapoints, using

this plot, the machine learning model can make predictions about the data. In simple words,

"Regression shows a line or curve that passes through all the datapoints on target-predictor

graph in such a way that the vertical distance between the datapoints and the regression line is

minimum." The distance between datapoints and line tells whether a model has captured a strong

relationship or not.

Some examples of regression can be as:

o Prediction of rain using temperature and other factors

o Determining Market trends

o Prediction of road accidents due to rash driving.

Terminologies Related to the Regression Analysis:

o Dependent Variable: The main factor in Regression analysis which we want to predict

or understand is called the dependent variable. It is also called target variable.

o Independent Variable: The factors which affect the dependent variables or which are

39

used to predict the values of the dependent variables are called independent variable,

also called as a predictor.

o Outliers: Outlier is an observation which contains either very low value or very high value

in comparison to other observed values. An outlier may hamper the result, so it should be

avoided.

o Multicollinearity: If the independent variables are highly correlated with each other than

other variables, then such condition is called Multicollinearity. It should not be present in

the dataset, because it creates problem while ranking the most affecting variable.

o Underfitting and Overfitting: If our algorithm works well with the training dataset but

not well with test dataset, then such problem is called Overfitting. And if our algorithm

does not perform well even with training dataset, then such problem is called underfitting.

Why do we use Regression Analysis?

As mentioned above, Regression analysis helps in the prediction of a continuous variable.

There are various scenarios in the real world where we need some future predictions such as

weather condition, sales prediction, marketing trends, etc., for such case we need some technology

which can make predictions more accurately. So for such case we need Regression analysis which

is a statistical method and used in machine learning and data science. Below are some other

reasons for using Regression analysis:

o Regression estimates the relationship between the target and the independent variable.

o It is used to find the trends in data.

o It helps to predict real/continuous values.

o By performing the regression, we can confidently determine the most important

factor, the least important factor, and how each factor is affecting the other factors.

Types of Regression

There are various types of regressions which are used in data science and machine learning. Each

type has its own importance on different scenarios, but at the core, all the regression methods

analyze the effect of the independent variable on dependent variables. Here we are discussing

some important types of regression which are given below:

o Linear Regression

40

o Logistic Regression

o Polynomial Regression

o Support Vector Regression

o Decision Tree Regression

o Random Forest Regression

o Ridge Regression

o Lasso Regression

 Linear Regression:

o Linear regression is a statistical regression method which is used for predictive analysis.

o It is one of the very simple and easy algorithms which works on regression and

shows the relationship between the continuous variables.

o It is used for solving the regression problem in machine learning.

o Linear regression shows the linear relationship between the independent variable (X-

axis) and the dependent variable (Y-axis), hence called linear regression.

o If there is only one input variable (x), then such linear regression is called simple linear

regression. And if there is more than one input variable, then such linear regression is

called multiple linear regression.

o The relationship between variables in the linear regression model can be explained using

the below image. Here we are predicting the salary of an employee on the basis of the year

of experience.

41

Below is the mathematical equation for Linear regression:

Y= aX+b

Here, Y = dependent variables (target

variables), X= Independent variables

(predictor variables), a and b are the linear

coefficients

Some popular applications of linear regression are:

o Analyzing trends and sales estimates

o Salary forecasting

o Real estate prediction

o Arriving at ETAs in traffic.

 Logistic Regression:

o Logistic regression is another supervised learning algorithm which is used to solve the

classification problems. In classification problems, we have dependent variables in a

binary or discrete format such as 0 or 1.

42

o Logistic regression algorithm works with the categorical variable such as 0 or 1, Yes or

No, True or False, Spam or not spam, etc.

o It is a predictive analysis algorithm which works on the concept of probability.

o Logistic regression is a type of regression, but it is different from the linear regression

algorithm in the term how they are used.

o Logistic regression uses sigmoid function or logistic function which is a complex cost

function. This sigmoid function is used to model the data in logistic regression. The

function can be represented as:

o f(x)= Output between the 0 and 1 value.

o x= input to the function

o e= base of natural logarithm.

When we provide the input values (data) to the function, it gives the S-curve as follows:

o It uses the concept of threshold levels, values above the threshold level are rounded up

to 1, and values below the threshold level are rounded up to 0.

34

43

There are three types of logistic regression:

o Binary(0/1, pass/fail)

o Multi(cats, dogs, lions)

o Ordinal(low, medium,

high) Linear Regression in

Machine Learning

Linear regression is one of the easiest and most popular Machine Learning algorithms. It is a

statistical method that is used for predictive analysis. Linear regression makes predictions for

continuous/real or numeric variables such as sales, salary, age, product price, etc.

Linear regression algorithm shows a linear relationship between a dependent (y) and one or more

independent (y) variables, hence called as linear regression. Since linear regression shows the

linear relationship, which means it finds how the value of the dependent variable is changing

according to the value of the independent variable.

The linear regression model provides a sloped straight line representing the relationship between

the variables. Consider the below image:

Mathematically, we can represent a linear regression as:

44

y= a0+a1x+ ε

Here,

Y= Dependent Variable (Target Variable)

X= Independent Variable (predictor Variable)

a0= intercept of the line (Gives an additional degree of freedom)

a1 = Linear regression coefficient (scale factor to each

input value). ε = random error

The values for x and y variables are training datasets for Linear Regression model representation.

Types of Linear Regression

Linear regression can be further divided into two types of the algorithm:

o Simple Linear Regression:

If a single independent variable is used to predict the value of a numerical dependent

variable, then such a Linear Regression algorithm is called Simple Linear Regression.

o Multiple Linear regression:

If more than one independent variable is used to predict the value of a numerical

dependent variable, then such a Linear Regression algorithm is called Multiple Linear

Regression.

Linear Regression Line:

A linear line showing the relationship between the dependent and independent variables is

called a regression line. A regression line can show two types of relationship:

o Positive Linear Relationship:

If the dependent variable increases on the Y-axis and independent variable increases on

X-axis, then such a relationship is termed as a Positive linear relationship.

45

o Negative Linear Relationship:

If the dependent variable decreases on the Y-axis and independent variable increases

on the X-axis, then such a relationship is called a negative linear relationship.

Finding the

best fit line:

When working with linear regression, our main goal is to find the best fit line that means

the error between predicted values and actual values should be minimized. The best fit line will

have the least error.

The different values for weights or the coefficient of lines (a0, a1) gives a different line of

regression, so we need to calculate the best values for a0 and a1 to find the best fit line, so to

calculate this we use cost function.

Cost function-

46

o The different values for weights or coefficient of lines (a0, a1) gives the different line of

regression, and the cost function is used to estimate the values of the coefficient for the

best fit line.

o Cost function optimizes the regression coefficients or weights. It measures how a linear

regression model is performing.

o We can use the cost function to find the accuracy of the mapping function, which maps

the input variable to the output variable. This mapping function is also known as

Hypothesis function.

For Linear Regression, we use the Mean Squared Error (MSE) cost function, which

is the average of squared error occurred between the predicted values and actual values. It can

be written as:

For the above linear equation, MSE can be calculated as:

Wher

e,

N=Total number of

observation Yi = Actual

value

(a1xi+a0)= Predicted value.

47

Residuals: The distance between the actual value and predicted values is called residual. If the

observed points are far from the regression line, then the residual will be high, and so cost

function will high. If the scatter points are close to the regression line, then the residual will be

small and hence the cost function.

Gradient Descent:

o Gradient descent is used to minimize the MSE by calculating the gradient of the cost function.

o A regression model uses gradient descent to update the coefficients of the line by

reducing the cost function.

o It is done by a random selection of values of coefficient and then iteratively update the

values to reach the minimum cost function.

Model Performance:

The Goodness of fit determines how the line of regression fits the set of

observations. The process of finding the best model out of various models is called

optimization. It can be achieved by below method:

1. R-squared method:

o R-squared is a statistical method that determines the goodness of fit.

o It measures the strength of the relationship between the dependent and independent

variables on a scale of 0-100%.

o The high value of R-square determines the less difference between the predicted values

and actual values and hence represents a good model.

o It is also called a coefficient of determination, or coefficient of multiple

determination for multiple regression.

48

o It can be calculated from the below formula:

Assumptions of Linear Regression

Below are some important assumptions of Linear Regression. These are some formal checks

while building a Linear Regression model, which ensures to get the best possible result from the

given dataset.

o Linear relationship between the features and target:

Linear regression assumes the linear relationship between the dependent and independent variables.

o Small or no multicollinearity between the features:

Multicollinearity means high-correlation between the independent variables. Due to

multicollinearity, it may difficult to find the true relationship between the predictors and

target variables. Or we can say, it is

difficult to determine which predictor variable is affecting the target variable and which

is not. So, the model assumes either little or no multicollinearity between the features or

independent variables.

o Homoscedasticity Assumption:

Homoscedasticity is a situation when the error term is the same for all the values of

independent variables. With homoscedasticity, there should be no clear pattern

distribution of data in the scatter plot.

o Normal distribution of error terms:

Linear regression assumes that the error term should follow the normal distribution

pattern. If error terms are not normally distributed, then confidence intervals will

become either too wide or too narrow, which may cause difficulties in finding

coefficients.

It can be checked using the q-q plot. If the plot shows a straight line without any

49

deviation, which means the error is normally distributed.

o No autocorrelations:

The linear regression model assumes no autocorrelation in error terms. If there will be

any correlation in the error term, then it will drastically reduce the accuracy of the model.

Autocorrelation usually occurs if there is a dependency between residual errors.

Simple Linear Regression in Machine Learning

Simple Linear Regression is a type of Regression algorithms that models the relationship between

a dependent variable and a single independent variable. The relationship shown by a Simple Linear

Regression model is linear or a sloped straight line, hence it is called Simple Linear Regression.

The key point in Simple Linear Regression is that the dependent variable must be a

continuous/real value. However, the independent variable can be measured on continuous or

categorical values.

Simple Linear regression algorithm has mainly two objectives:

o Model the relationship between the two variables. Such as the relationship

between Income and expenditure, experience and Salary, etc.

o Forecasting new observations. Such as Weather forecasting according to

temperature, Revenue of a company according to the investments in a year, etc.

The architecture of an artificial neural network:

50

Input Layer:

As the name suggests, it accepts inputs in several different formats provided by the programmer.

Hidden Layer:

The hidden layer presents in-between input and output layers. It performs all the

calculations to find hidden features and patterns.

Output Layer:

The input goes through a series of transformations using the hidden layer, which

finally results in output that is conveyed using this layer.

The artificial neural network takes input and computes the weighted sum of the inputs and

includes a bias. This computation is represented in the form of a transfer function.

It determines weighted total is passed as an input to an activation function to produce the output.

Activation functions choose whether a node should fire or not. Only those who are fired make it

to the output layer. There are distinctive activation functions available that can be applied upon

the sort of task we are performing.

Advantages of Artificial Neural

Network (ANN) Parallel processing

capability:

Artificial neural networks have a numerical value that can perform more than one task simultaneously.

51

Storing data on the entire network:

Data that is used in traditional programming is stored on the whole network, not on

a database. The disappearance of a couple of pieces of data in one place doesn't prevent the

network from working.

Capability to work with incomplete knowledge:

After ANN training, the information may produce output even with inadequate data. The loss

of performance here relies upon the significance of missing data.

Having a memory distribution:

For ANN is to be able to adapt, it is important to determine the examples and to encourage

the network according to the desired output by demonstrating these examples to the network. The

succession of the network is directly proportional to the chosen instances, and if the event can't

appear to the network in all its aspects, it can produce false output.

Having fault tolerance:

Extortion of one or more cells of ANN does not prohibit it from generating output, and

this feature makes the network fault-tolerance.

Disadvantages of Artificial Neural Network:

Assurance of proper network structure:

There is no particular guideline for determining the structure of artificial neural networks.

The appropriate network structure is accomplished through experience, trial, and error.

Unrecognized behavior of the network:

It is the most significant issue of ANN. When ANN produces a testing solution, it does not

provide insight concerning why and how. It decreases trust in the network.

Hardware dependence:

Artificial neural networks need processors with parallel processing power, as per their

structure. Therefore, the realization of the equipment is dependent.

52

Difficulty of showing the issue to the network:

ANNs can work with numerical data. Problems must be converted into numerical values

before being introduced to ANN. The presentation mechanism to be resolved here will directly

impact the performance of the network. It relies on the user's abilities.

The duration of the network is unknown:

The network is reduced to a specific value of the error, and this value does not give us

optimum results. “Science artificial neural networks that have steeped into the world in the

mid-20th century are exponentially developing. In the present time, we have investigated the

pros of artificial neural networks and the issues encountered in the course of their utilization. It

should not be overlooked that the cons of ANN networks, which are a flourishing science

branch, are eliminated individually, and their pros are increasing day by day. It means that

artificial neural networks will turn into an irreplaceable part of our lives progressively

important.”

How do artificial neural networks work?

Artificial Neural Network can be best represented as a weighted directed graph, where

the artificial neurons form the nodes. The association between the neurons outputs and neuron

inputs can be viewed as the directed edges with weights. The Artificial Neural Network receives

the input signal from the external source in the form of a pattern and image in the form of a vector.

These inputs are then mathematically assigned by the notations x(n) for every n number of inputs.

53

Afterward, each of the input is multiplied by its corresponding weights (these weights are

the details utilized by the artificial neural networks to solve a specific problem). In general terms,

these weights normally represent the strength of the interconnection between neurons inside the

artificial neural network. All the weighted inputs are summarized inside the computing unit.

If the weighted sum is equal to zero, then bias is added to make the output non-zero or

something else to scale up to the system's response. Bias has the same input, and weight equals to

1. Here the total of weighted inputs can be in the range of 0 to positive infinity. Here, to keep the

response in the limits of the desired value, a certain maximum value is benchmarked, and the total

of weighted inputs is passed through the activation function.

The activation function refers to the set of transfer functions used to achieve the desired

output. There is a different kind of the activation function, but primarily either linear or non-linear

sets of functions. Some of the commonly used sets of activation functions are the Binary, linear,

and Tan hyperbolic sigmoidal activation functions. Let us take a look at each of them in details:

Binary:

In binary activation function, the output is either a one or a 0. Here, to accomplish this, there is a

threshold

value set up. If the net weighted input of neurons is more than 1, then the final output of the

activation function is returned as one or else the output is returned as 0.

Sigmoidal Hyperbolic:

The Sigmoidal Hyperbola function is generally seen as an "S" shaped curve. Here the tan

54

hyperbolic function is used to approximate output from the actual net input. The function is

defined as:

F(x) = (1/1 + exp(-????x))

Where ???? is considered the Steepness parameter.

Types of Artificial Neural Network:

There are various types of Artificial Neural Networks (ANN) depending upon the human

brain neuron and network functions, an artificial neural network similarly performs tasks. The

majority of the artificial neural networks will have some similarities with a more complex

biological partner and are very effective at their expected tasks. For example, segmentation or

classification.

Feedback ANN:

In this type of ANN, the output returns into the network to accomplish the best-evolved

results internally. As per the University of Massachusetts, Lowell Centre for Atmospheric

Research. The feedback networks feed information back into itself and are well suited to solve

optimization issues. The Internal system error corrections utilize feedback ANNs.

Feed-Forward ANN:

A feed-forward network is a basic neural network comprising of an input layer, an output

layer, and at least one layer of a neuron. Through assessment of its output by reviewing its input,

the intensity of the network can be noticed based on group behavior of the associated neurons,

and the output is decided. The primary advantage of this network is that it figures out how to

evaluate and recognize input patterns.

55

Prerequisite

No specific expertise is needed as a prerequisite before starting this tutorial.

Audience

Our Artificial Neural Network Tutorial is developed for beginners as well as

professionals, to help them understand the basic concept of ANNs.

PERCEPTRONS

One type of ANN system is based on a unit called a perceptron, illustrated in below Figure:

A perceptron takes a vector of real-valued inputs, calculates a linear combination of these inputs,

then outputs a 1 if the result is greater than some threshold and -1 otherwise. More precisely, given

inputs xl through xn the output o(xl, . . . , xn) computed by the perceptron is

Multi-layer Perceptron

Multi-layer Perceptron (MLP) is a supervised learning algorithm that learns

a function f(⋅):Rm→Ro by training on a dataset, where m is the number of dimensions for input

56

and o is the number of dimensions for output. Given a set of features X=x1,x2,...,xm and a target y,

it can learn a non- linear function approximator for either classification or regression. It is different

from logistic regression, in that between the input and the output layer, there can be one or more

non-linear layers, called hidden layers. Figure shows a one hidden layer MLP with scalar output.

The leftmost layer, known as the input layer, consists of a set of neurons {xi|x1,x2,...,xm}

representing the input features. Each neuron in the hidden layer transforms the values from the

previous layer with a weighted linear summation w1x1+w2x2+...+wmxm, followed by a non-linear

activation function g(⋅):R→R - like the hyperbolic tan function. The output layer receives the

values from the last hidden layer and transforms them into output values.

The module contains the public attributes coefs_ and intercepts_. coefs_ is a list of weight

matrices, where weight matrix at index i represents the weights between layer i and layer i+1.

intercepts_ is a list of bias vectors, where the vector at index i represents the bias values added to

layer i+1.

The advantages of Multi-layer Perceptron are:

 Capability to learn non-linear models.

 Capability to learn models in real-time (on-line learning) using

partial_fit. The disadvantages of Multi-layer Perceptron (MLP) include:

 MLP with hidden layers have a non-convex loss function where there exists more than one

local minimum. Therefore different random weight initializations can lead to different

validation accuracy.

 MLP requires tuning a number of hyperparameters such as the number of hidden neurons,

layers, and iterations.

 MLP is sensitive to feature scaling.

57

 Support Vector Machines

Support Vector Machine or SVM is one of the most popular Supervised Learning

algorithms, which is used for Classification as well as Regression problems. However, primarily,

it is used for Classification problems in Machine Learning. The goal of the SVM algorithm is to

create the best line or decision boundary that can segregate n-dimensional space into classes so

that we can easily put the new data point in the correct category in the future. This best decision

boundary is called a hyperplane. SVM chooses the extreme points/vectors that help in creating

the hyperplane. These extreme cases are called as support vectors, and hence algorithm is

termed as Support Vector Machine. Consider the below diagram in which there are two

different categories that are classified using a decision boundary or hyperplane:

Example: SVM can be understood with the example that we have used in the KNN classifier.

Suppose we see a strange cat that also has some features of dogs, so if we want a model that can

accurately identify whether it is a cat or dog, so such a model can be created by using the SVM

algorithm. We will first train our model with lots of images of cats and dogs so that it can learn

about different features of cats and dogs, and then we test it with this strange creature. So as

support vector creates a decision boundary between these two data (cat and dog) and choose

58

extreme cases (support vectors), it will see the extreme case of cat and dog. On the basis of the

support vectors, it will classify it as a cat. Consider the below diagram:

SVM algorithm can be used for Face detection, image classification, text

categorization, etc. Types of SVM

SVM can be of two types:

o Linear SVM: Linear SVM is used for linearly separable data, which means if a dataset

can be classified into two classes by using a single straight line, then such data is

termed as linearly separable data, and classifier is used called as Linear SVM classifier.

o Non-linear SVM: Non-Linear SVM is used for non-linearly separated data, which

means if a dataset cannot be classified by using a straight line, then such data is termed

as non-linear data and classifier used is called as Non-linear SVM classifier.

Hyperplane and Support Vectors in the SVM algorithm:

Hyperplane: There can be multiple lines/decision boundaries to segregate the classes

in n- dimensional space, but we need to find out the best decision boundary that helps to classify

the data points. This best boundary is known as the hyperplane of SVM.

The dimensions of the hyperplane depend on the features present in the dataset, which means if

there are 2 features (as shown in image), then hyperplane will be a straight line. And if there are

3 features, then hyperplane will be a 2-dimension plane.

We always create a hyperplane that has a maximum margin, which means the maximum distance

between the data points.

Support Vectors:

The data points or vectors that are the closest to the hyperplane and which affect the position of

the hyperplane are termed as Support Vector. Since these vectors support the hyperplane, hence

called a Support vector. How does SVM works?

Linear SVM:

59

The working of the SVM algorithm can be understood by using an example. Suppose we have a

dataset that has two tags (green and blue), and the dataset has two features x1 and x2. We want a

classifier that can classify the pair(x1, x2) of coordinates in either green or blue. Consider the

below image:

So as it is 2-d space so by just using a straight line, we can easily separate these two classes.

But there can be multiple lines that can separate these classes. Consider the below image:

Hence, the SVM algorithm helps to find the best line or decision boundary; this best boundary or

region is called as a hyperplane. SVM algorithm finds the closest point of the lines from both the

classes. These points are called support vectors. The distance between the vectors and the

hyperplane is called as margin. And the goal of SVM is to maximize this margin. The hyperplane

with maximum margin is called the optimal hyperplane.

Non-Linear SVM:

If data is linearly arranged, then we can separate it by using a straight line, but for

non-linear data, we cannot draw a single straight line. Consider the below image:

60

So to separate these data points, we need to add one more dimension. For linear data, we have

used two dimensions x and y, so for non-linear data, we will add a third dimension z. It can be

calculated as:

z=x2 +y2

By adding the third dimension, the sample space will become as below image:

So now, SVM will divide the datasets into classes in the following way. Consider the below image:

61

Since we are in 3-d Space, hence it is looking like a plane parallel to the x-axis. If we

convert it in 2d space with z=1, then it will become as:

Hence we get a circumference of radius 1 in case of non-linear data.

 SVM Kernels

In practice, SVM algorithm is implemented with kernel that transforms an input data space into

62

the required form. SVM uses a technique called the kernel trick in which kernel takes a low

dimensional input space and transforms it into a higher dimensional space. In simple words, kernel

converts non- separable problems into separable problems by adding more dimensions to it. It

makes SVM more powerful, flexible and accurate. The following are some of the types of kernels

used by SVM.

Linear Kernel

It can be used as a dot product between any two observations. The formula of linear kernel is as below

K(x,xi)=sum(x∗xi)

From the above formula, we can see that the product between two vectors say 𝑥 & 𝑥𝑖 is the sum

of the multiplication of each pair of input values.

Unsupervised Machine Learning:

 Introduction to clustering

As the name suggests, unsupervised learning is a machine learning technique in which

models are not supervised using training dataset. Instead, models itself find the hidden patterns

and insights from the given data. It can be compared to learning which takes place in the human

brain while learning new things. It can be defined as:

“Unsupervised learning is a type of machine learning in which models are trained using

unlabeled dataset and are allowed to act on that data without any supervision.”

Unsupervised learning cannot be directly applied to a regression or classification problem

because unlike supervised learning, we have the input data but no corresponding output data. The

goal of unsupervised learning is to find the underlying structure of dataset, group that data

according to similarities, and represent that dataset in a compressed format

Example: Suppose the unsupervised learning algorithm is given an input dataset containing

images of different types of cats and dogs. The algorithm is never trained upon the given dataset,

which means it does not have any idea about the features of the dataset. The task of the

63

unsupervised learning algorithm is to identify the image features on their own. Unsupervised

learning algorithm will perform this task by clustering the image dataset into the groups according

to similarities between images.

Why use Unsupervised Learning?

Below are some main reasons which describe the importance of Unsupervised Learning:

o Unsupervised learning is helpful for finding useful insights from the data.

o Unsupervised learning is much similar as a human learns to think by their own

experiences, which makes it closer to the real AI.

o Unsupervised learning works on unlabeled and uncategorized data which make

unsupervised learning more important.

o In real-world, we do not always have input data with the corresponding output so to

solve such cases, we need unsupervised learning.

Working of Unsupervised Learning

64

Working of unsupervised learning can be understood by the below diagram:

Here, we have taken an unlabeled input data, which means it is not categorized and

corresponding outputs are also not given. Now, this unlabeled input data is fed to the machine

learning model in order to train it. Firstly, it will interpret the raw data to find the hidden patterns

from the data and then will apply suitable algorithms such as k-means clustering, Decision tree,

etc.

Once it applies the suitable algorithm, the algorithm divides the data objects into groups

according to the similarities and difference between the objects.

Types of Unsupervised Learning Algorithm:

The unsupervised learning algorithm can be further categorized into two types of problems:

65

o Clustering: Clustering is a method of grouping the objects into clusters such that objects

with most similarities remains into a group and has less or no similarities with the objects

of another group. Cluster analysis finds the commonalities between the data objects and

categorizes them as per the presence and absence of those commonalities.

o Association: An association rule is an unsupervised learning method which is used for

finding the relationships between variables in the large database. It determines the set of

items that occurs together in the dataset. Association rule makes marketing strategy more

effective. Such as people who buy X item (suppose a bread) are also tend to purchase Y

(Butter/Jam) item. A typical example of Association rule is Market Basket Analysis.

Unsupervised Learning algorithms:

Below is the list of some popular unsupervised learning algorithms:

o K-means clustering

o KNN (k-nearest neighbors)

o Hierarchal clustering

o Anomaly detection

o Neural Networks

o Principle Component Analysis

o Independent Component Analysis

o Apriori algorithm

66

o Singular value decomposition

Advantages of Unsupervised Learning

o Unsupervised learning is used for more complex tasks as compared to supervised

learning because, in unsupervised learning, we don't have labeled input data.

o Unsupervised learning is preferable as it is easy to get unlabeled data in comparison to

labeled data.

Disadvantages of Unsupervised Learning

o Unsupervised learning is intrinsically more difficult than supervised learning as it does

not have corresponding output.

o The result of the unsupervised learning algorithm might be less accurate as input data

is not labeled, and algorithms do not know the exact output in advance.

67

Supervised Learning Unsupervised Learning

Supervised learning algorithms are trained using labeled

data.

Unsupervised learning algorithms are trained using

unlabeled data.

Supervised learning model takes direct feedback to

check if it is predicting correct output or not.

Unsupervised learning model does not take any

feedback.

Supervised learning model predicts the output.

Unsupervised learning model finds the hidden

patterns in data.

In supervised learning, input data is provided to the

model along with the output.

In unsupervised learning, only input data is provided

to the model.

The goal of supervised learning is to train the model

so that it can predict the output when it is given new

data.

The goal of unsupervised learning is to find the

hidden patterns and useful insights from the

unknown dataset.

Supervised learning needs supervision to train the model.

Unsupervised learning does not need any

supervision to train the model.

Supervised learning can be categorized

in Classification and Regression problems.

Unsupervised Learning can be

classified in Clustering and

Associations problems.

Supervised learning can be used for those cases where

we know the input as well as corresponding outputs.

Unsupervised learning can be used for those

cases where we have only input data and no

corresponding output data.

Supervised learning model produces an accurate result.

Unsupervised learning model may give less

accurate result as compared to supervised

learning.

Supervised learning is not close to true Artificial

Unsupervised learning is more close to the true

68

intelligence as in this, we

first train the model for each data, and then only it can

predict the correct output.

Artificial

Intelligence as it learns similarly as a child

learns daily routine things by his experiences.

It includes various algorithms such as Linear Regression,

Logistic

Regression, Support Vector Machine, Multi-class

Classification, Decision tree, Bayesian Logic, etc.

It includes various algorithms such as Clustering,

KNN, and Apriori algorithm.

 K-Mean Clustering

k-means clustering algorithm

One of the most used clustering algorithm is k-means. It allows to group the data according to the

existing similarities among them in k clusters, given as input to the algorithm. I’ll start with a

simple example.

Let’s imagine we have 5 objects (say 5 people) and for each of them we know two features (height

and weight). We want to group them into k=2 clusters.

ENSEMBLE AND PROBABILISTIC LEARNING

Ensemble Learning: Model Combination Schemes, Voting, Error-Correcting Output Codes,

Bagging: Random Forest Trees, Boosting: Adaboost, Stacking.

Probabilistic Learning: Gaussian mixture models - The Expectation-Maximization (EM)

Algorithm, Information Criteria, Nearest neighbour methods - Nearest Neighbour Smoothing,

Efficient Distance Computations: the KD-Tree, Distance Measures.

3. Introduction:

Ensemble Learning

Ensemble learning usually produces more accurate solutions than a single model would.

69

Ensemble Learning is a technique that create multiple models and then combine them them to

produce improved results. Ensemble learning usually produces more accurate solutions than a

single model would.

 Ensemble learning methods is applied to regression as well as classification.

o Ensemble learning for regression creates multiple repressors i.e. multiple

regression models such as linear, polynomial, etc.

o Ensemble learning for classification creates multiple classifiers i.e. multiple

classification models such as logistic, decision tress, KNN, SVM, etc.

Figure 1: Ensemble learning view

Which components to combine?

• different learning algorithms

• same learning algorithm trained in different ways

• same learning algorithm trained the same way

There are two steps in ensemble learning:

Multiples machine learning models were generated using same or different machine

learning algorithm. These are called “base models”. The prediction perform on the basis of base

models.

Techniques/Methods in ensemble learning

Voting, Error-Correcting Output Codes, Bagging: Random Forest Trees, Boosting: Adaboost, Stacking.

Model Combination Schemes - Combining Multiple Learners

70

We discussed many different learning algorithms in the previous chapters. Though these

are generally successful, no one single algorithm is always the most accurate. Now, we are going

to discuss models composed of multiple learners that complement each other so that by combining

them, we attain higher accuracy.

There are also different ways the multiple base-learners are combined to generate the final

output:

Figure2: General Idea - Combining Multiple Learners

Multiexpert combination

Multiexpert combination methods have base-learners that work in parallel. These methods

can in turn be divided into two:

 In the global approach, also called learner fusion, given an input, all base-learners generate

an output and all these outputs are used.

Examples are voting and stacking.

 In the local approach, or learner selection, for example, in mixture of experts, there is a

gating model, which looks at the input and chooses one (or very few) of the learners as

responsible for generating the output.

Multistage combination

Multistage combination methods use a serial approach where the next base-learner is

71

trained with or tested on only the instances where the previous base-learners are not accurate

enough. The idea is that the base-learners (or the different representations they use) are sorted in

increasing complexity so that a complex base-learner is not used (or its complex representation is

not extracted) unless the preceding simpler base-learners are not confident.

An example is cascading.

Let us say that we have L base-learners. We denote by dj(x) the prediction of base-learner Mj given

the arbitrary dimensional input x. In the case of multiple representations, each Mj uses a different

input representation xj . The final prediction is calculated from the predictions of

the base-learners:

y = f (d1, d2, . . . , dL |Φ)

where f (·) is the combining function with Φ denoting its parameters.

Figure 1: Base-learners are dj and their outputs are combined using f (·). This is for a single

output; in the case of classification, each base-learner has K outputs that are separately used to

calculate yi, and then we choose the maximum. Note that here all learners observe the same input;

it may be the case that different learners observe different representations of the same input object

or event.

When there are K outputs, for each learner there are dji(x), i = 1, . . . , K,

j = 1, . . . , L, and, combining them, we also generate K values, yi, i = 1, . . . , K and then for

example in classification, we choose the class with

72

the maximum yi value:

Voting

The simplest way to combine multiple classifiers is by voting, which corresponds to

taking a linear combination of the learn

ers, Refer figure 1.

This is also known as ensembles and linear opinion pools. In the sim plest case, all learners

are given equal weight and we have simple voting that corresponds to taking an average. Still,

taking a (weighted) sum is only one of the possibilities and there are also other combination rules,

as shown in table 1. If the outputs are not posterior probabilities, these rules require that outputs

be normalized to the same scale

Table 1 - Classifier combination rules

73

An example of the use of these rules is shown in table 2, which demonstrates the effects

of different rules. Sum rule is the most intuitive and is the most widely used in practice. Median

rule is more robust to outliers; minimum and maximum rules are pessimistic and optimistic,

respectively. With the product rule, each learner has veto power; regardless of the other ones, if

one learner has an output of 0, the overall output goes to 0. Note that after the combination rules,

yi do not necessarily sum up to 1.

Table 2: Example of combination rules on three learners and three classes

In weighted sum, dji is the vote of learner j for class Ci and wj is the weight of its vote. Simple

voting is a special case where all voters have equal weight, namely, wj = 1/L. In classification, this

is called plurality voting where the class having the maximum number of votes is the winner.

When there are two classes, this is majority voting where the winning class gets more than half of

the votes. If the voters can also supply the additional information of how much they vote for

each class (e.g., by the posterior probability), then after normalization, these can be used as weights

in a weighted voting scheme. Equivalently, if dji are the class posterior probabilities, P(Ci | x,Mj),

then we can just sum them up (wj = 1/L) and choose the class with maximum yi .

In the case of regression, simple or weighted averaging or median can be used to fuse the outputs

of base-regressors. Median is more robust to noise than the average.

Another possible way to find wj is to assess the accuracies of the learners (regressor or classifier)

on a separate validation set and use that information to compute the weights, so that we give more

weights to more accurate learners.

74

Voting schemes can be seen as approximations under a Bayesian framework with weights

approximating prior model probabilities, and model decisions approximating model-conditional

likelihoods.

Simple voting corresponds to a uniform prior. If we have a prior distribution preferring simpler

models, this would give larger weights to them. We cannot integrate over all models; we only

choose a subset for which we believe P(Mj) is high, or we can have another Bayesian step and

calculate P(Ci | x,Mj), the probability of a model given the sample, and sample high probable

models from this density.

Let us assume that dj are iid with expected value E[dj] and variance Var(dj), then when we take a simple

average with wj = 1/L, the expected value and variance of the output are

We see that the expected value does not change, so the bias does not change. But variance, and

therefore mean square error, decreases as the number of independent voters, L, increases. In the

general case,

which implies that if learners are positively correlated, variance (and error) increase. We can thus

view using different algorithms and input features as efforts to decrease, if not completely

eliminate, the positive correlation.

Error-Correcting Output Codes

The Error-Correcting Output Codes method is a technique that allows a multi-class

75

classification problem to be reframed as multiple binary classification problems, allowing the use

of native binary classification models to be used directly.

Unlike one-vs-rest and one-vs-one methods that offer a similar solution by dividing a

multi-class classification problem into a fixed number of binary classification problems, the error-

correcting output codes technique allows each class to be encoded as an arbitrary number of binary

classification problems. When an overdetermined representation is used, it allows the extra models

to act as “error- correction” predictions that can result in better predictive performance.

In error-correcting output codes (ECOC), the main classification task is defined in terms

of a number of subtasks that are implemented by the base-learners. The idea is that the original

task of separating one class from all other classes may be a difficult problem. Instead, we want

to define a set of simpler classification problems, each specializing in one aspect of the task, and

combining these simpler classifiers, we get the final classifier.

Base-learners are binary classifiers having output −1/ + 1, and there is a code matrix W of K × L

whose K rows are the binary codes of classes in terms of the L base-learners dj. For example, if

the second row of W is [−1,+1,+1,−1], this means that for us to say an instance belongs to C2, the

instance should be on the negative side of d1 and d4, and on the positive side of d2 and d3. Similarly,

the columns of the code matrix defines the task of the base-learners. For example, if the third

column is [−1,+1,+1]T , we understand that the task of the third base-learner, d3, is to separate the

instances of C1 from the instances of C2 and C3 combined. This is how we form the training set

of the base-learners. For example

in this case, all instances labeled with C2 and C3 form X+ and instances labeled with C1 form X−, and d3 is

3 3

trained so that xt ∈ X+ give output +1 and xt ∈ X− give output −1.

3 3

The code matrix thus allows us to define a polychotomy (K > 2 classification problem) in

terms of dichotomies (K = 2 classification problem), and it is a method that is applicable

using any learning

algorithm to implement the dichotomizer base-learners—for example, linear or multilayer

https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification/

76

perceptrons (with a single output), decision trees, or SVMs whose original definition is for two-

class problems.

The typical one discriminant per class setting corresponds to the diagonal code matrix where L =

K. For example, for K = 4,

we have

The problem here is that if there is an error with one of the baselearners, there may be a

misclassification because the class code words are so similar. So the approach in error-correcting

codes is to have L > K and increase the Hamming distance between the code words. One

possibility is pairwise separation of classes where there is a separate baselearner to separate Ci

from Cj, for i < j. In this case, L

= K(K − 1)/2 and with K = 4, the code matrix is

where a 0 entry denotes “don’t care.” That is, d1 is trained to separate C1 from C2 and does not use

the training instances belonging to the other classes. Similarly, we say that an instance belongs

to C2 if d1 =

−1 and d4 = d5 = +1, and we do not consider the values of d2, d3, and d6. The problem here is that

L is O(K2), and for large K pairwise separation may not be feasible.

If we can have L high, we can just randomly generate the code matrix with −1/ + 1 and this will

work fine, but if we want to keep L low, we need to optimize W. The approach is to set L

beforehand and then find W such that the distances between rows, and at the same time the

distances between columns, are as large as possible, in terms of Hamming distance. With K

classes, there are 2(K-1) − 1 possible columns, namely, two-class problems. This is because K bits

can be written in 2K different ways and complements (e.g., “0101” and “1010,” from our point of

77

view, define the same discriminant) dividing the possible combinations by 2 and then subtracting

1 because a column of all 0s (or 1s) is useless. For example, when K = 4, we have

When K is large, for a given value of L, we look for L columns out of the 2(K-1)−1. We would like

these columns of W to be as different as possible so that the tasks to be learned by the base-learners

are as different from each other as possible. At the same time, we would like the rows of W to be

as different as possible so that we can have maximum error correction in case one or more base-

learners fail.

ECOC can be written as a voting scheme where the entries of W, wij , are considered as vote weights:

and then we choose the class with the highest yi . Taking a weighted sum and then choosing the

maximum instead of checking for an exact match allows dj to no longer need to be binary but to

take a value between −1 and +1, carrying soft certainties instead of hard decisions. Note that a

value pj between 0 and 1, for example, a posterior probability, can be converted to a value dj

between −1 and +1 simply as

One problem with ECOC is that because the code matrix W is set a priori, there is no guarantee

that the subtasks as defined by the columns of W will be simple.

Bagging

Bootstrap aggregating, often abbreviated as bagging, involves having each model in the

ensemble vote with equal weight. In order to promote model variance, bagging trains each model

in the ensemble using a randomly drawn subset of the training set. As an example, the

random forest algorithm combines random decision trees with bagging to achieve very high

classification accuracy.

https://en.wikipedia.org/wiki/Random_forest
https://en.wikipedia.org/wiki/Random_forest

78

The simplest method of combining classifiers is known as bagging, which stands for

bootstrap aggregating, the statistical description of the method. This is fine if you know what a

bootstrap is, but fairly useless if you don’t. A bootstrap sample is a sample taken from the original

dataset with replacement, so that we may get some data several times and others not at all. The

bootstrap sample is the same size as the original, and lots and lots of these samples are taken: B of

them, where B is at least 50, and could even be in the thousands. The name bootstrap is more

popular in computer science than anywhere else, since there is also a bootstrap loader, which is

the first program to run when a computer is turned on. It comes from the nonsensical idea of

‘picking yourself up by your bootstraps,’ which means lifting yourself up by your shoelaces, and

is meant to imply starting from nothing.

Bootstrap sampling seems like a very strange thing to do. We’ve taken a perfectly good

dataset, mucked it up by sampling from it, which might be good if we had made a smaller dataset

(since it would be faster), but we still ended up with a dataset the same size. Worse, we’ve done

it lots of times. Surely this is just a way to burn up computer time without gaining anything. The

benefit of it is that we will get lots of learners that perform slightly differently, which is exactly

what we want for an ensemble method. Another benefit is that estimates of the accuracy of the

classification function can be made without complicated analytic work, by throwing computer

resources at the problem (technically, bagging is a variance reducing algorithm; the meaning of

this will become clearer when we talk about bias and variance). Having taken a set of bootstrap

samples, the bagging method simply requires that we fit a model to each dataset, and then combine

them by taking the output to be the majority vote of all the classifiers. A NumPy implementation

is shown next, and then we will look at a simple example.

Compute bootstrap samples

samplePoints =

np.random.randint(0,nPoints,(nPoints,nSamples)) classifiers

= []

for i in range(nSamples):

sample = []

sampleTarget =

[] for j in

79

range(nPoints):

sample.append(data[samplePoints[j,i]])

sampleTarget.append(targets[samplePoints[j,i]])

Train classifiers

classifiers.append(self.tree.make_tree(sample,sampleTarget,features))

The example consists of taking the party data that was used to demonstrate the decision tree, and

restricting the trees to stumps, so that they can make a classification based on just one variable

When we want to construct the decision tree to decide what to do in the evening, we start by listing

everything that we’ve done for the past few days to get a suitable dataset (here, the last ten days):

The output of a decision tree that uses the whole dataset for this is not surprising: it takes the two

largest classes, and separates them. However, using just stumps of trees and 20 samples, bagging

can separate the data perfectly, as this output shows:

 RANDOM FORESTS

80

A random forest is an ensemble learning method where multiple decision trees are

constructed and then they are merged to get a more accurate prediction.

If there is one method in machine learning that has grown in popularity over the last few

years, then it is the idea of random forests. The concept has been around for longer than that, with

several different people inventing variations, but the name that is most strongly attached to it is

that of Breiman, who also described the CART algorithm in unit 2.

Figure 3: Example of random forest with majority voting

The idea is largely that if one tree is good, then many trees (a forest) should be better,

provided that there is enough variety between them. The most interesting thing about a random

forest is the ways that it creates randomness from a standard dataset. The first of the methods that

it uses is the one that we have just seen: bagging. If we wish to create a forest then we can make

the trees different by training them on slightly different data, so we take bootstrap samples from

the dataset for each tree. However, this isn’t enough randomness yet. The other obvious place

where it is possible to add randomness is to limit the choices that the decision tree can make. At

each node, a random subset of the features is given to the tree, and it can only pick from that subset

rather than from the whole set.

As well as increasing the randomness in the training of each tree, it also speeds up the

training, since there are fewer features to search over at each stage. Of course, it does introduce a

new parameter (how many features to consider), but the random forest does not seem to be very

sensitive to this parameter; in practice, a subset size that is the square root of the number of

81

features seems to be common. The effect of these two forms of randomness is to reduce the

variance without effecting the bias. Another benefit of this is that there is no need to prune the

trees. There is another parameter that we don’t know how to choose yet, which is the number of

trees to put into the forest. However, this is fairly easy to pick if we want optimal results: we can

keep on building trees until the error stops decreasing.

Once the set of trees are trained, the output of the forest is the majority vote for

classification, as with the other committee methods that we have seen, or the mean response for

regression. And those are pretty much the main features needed for creating a random forest. The

algorithm is given next before we see some results of using the random forest.

Algorithm

Here is an outline of the random forest algorithm.

1. The random forests algorithm generates many classification trees. Each tree is

generated as follows:

a) If the number of examples in the training set is N, take a sample of N examples at

random - but with replacement, from the original data. This sample will be the

training set for generating the tree.

b) If there are M input variables, a number m is specified such that at each node, m

variables are selected at random out of the M and the best split on these m is used

to split the node. The value of m is held constant during the generation of the

various trees in the forest.

c) Each tree is grown to the largest extent possible.

2. To classify a new object from an input vector, put the input vector down each of the trees

in the forest. Each tree gives a classification, and we say the tree “votes” for that class. The

forest chooses the classification

The implementation of this is very easy: we modify the decision to take an extra parameter, which

is m, the number of features that should be used in the selection set at each stage. We will look at

an example of using it shortly as a comparison to boosting.

Looking at the algorithm you might be able to see that it is a very unusual machine learning

method because it is embarrassingly parallel: since the trees do not depend upon each other, you

82

can both create and get decisions from different trees on different individual processors if you

have them. This means that the random forest can run on as many processors as you have available

with nearly linear speedup.

There is one more nice thing to mention about random forests, which is that with a little

bit of programming effort they come with built-in test data: the bootstrap sample will miss out

about 35% of the data on average, the so-called out-of-bootstrap examples. If we keep track of

these datapoints then they can be used as novel samples for that particular tree, giving an estimated

test error that we get without having to use any extra datapoints.

 Boosting

 Boosting: train next learner on mistakes made by previous learner(s)

In bagging, generating complementary base-learners is left to chance and to the unstability of the

learning method. In boosting, we actively try to generate complementary base-learners by training

the next learner on the mistakes of the previous learners. The original boosting algorithm combines

three weak learners to generate a strong learner. A weak learner has error probability less than

1/2, which makes it better than random guessing on a two-class problem, and a strong learner has

arbitrarily small error probability.

Original Boosting Concept

Given a large training set, we randomly divide it into three. We use X1 and train d1. We then take

X2 and feed it to d1. We take all instances misclassified by d1 and also as many instances on

which d1 is correct

from X2, and these together form the training set of d2. We then take X3 and feed it to d1 and d2.

The instances on which d1 and d2 disagree form the training set of d3. During testing, given an

instance, we give it to d1 and d2; if they agree, that is the response, otherwise the response of d3

is taken as the output.

1. Split data X into {X1, X2, X3}

2. Train d1 on X1

 Test d1 on X2

83

3. Train d2 on d1’s mistakes on X2 (plus some right)

 Test d1 and d2 on X3

4. Train d3 on disagreements between d1 and d2

 Testing: apply d1 and d2; if disagree, use d3

 Drawback: need large X

overall system has reduced error rate, and the error rate can arbitrarily be reduced by using such

systems recursively, that is, a boosting system of three models used as dj in a higher system.

Though it is quite successful, the disadvantage of the original boosting method is that it requires

a very large training sample. The sample should be divided into three and furthermore, the second

and third classifiers are only trained on a subset on which the previous ones err. So unless one has

a quite large training set, d2 and d3 will not have training

sets of reasonable size.

 AdaBoost

Freund and Schapire (1996) proposed a variant, named AdaBoost, short for adaptive

boosting, that uses the same training set over and over and thus need not be large, but the classifiers

should be simple so that they do not overfit. AdaBoost can also combine an arbitrary number of

baselearners, not three.

 GAUSSIAN MIXTURE MODELS

However, suppose that we have the same data, but without target labels. This requires

unsupervised learning, Suppose that the different classes each come from their own Gaussian

distribution. This is known as multi-modal data, since there is one distribution (mode) for each

different class. We can’t fit one Gaussian to the data, because it doesn’t look Gaussian overall.

There is, however, something we can do. If we know how many classes there are in the

data, then we can try to estimate the parameters for that many Gaussians, all at once. If we don’t

know, then we can try different numbers and see which one works best. We will talk about this

issue more for a different method (the k-means algorithm) in Unit 2. It is perfectly possible to use

any other probability distribution instead of a Gaussian, but Gaussians are by far the most common

84

𝑚=1

choice. Then the output for any particular datapoint that is input to the algorithm will be the sum

of the values expected by all of the M Gaussians:

where _(x ; μm, ∑ 𝑚) is a Gaussian function with mean μm and covariance matrix ∑ 𝑚, and the αm are

weights with the constraint that ∑𝑀 𝛼𝑚 =1.

The given figures 4 shows two examples, where the data (shown by the histograms) comes from

two different Gaussians, and the model is computed as a sum or mixture of the two Gaussians

together.

FIGURE 4: Histograms of training data from a mixture of two Gaussians and two fitted models,

shown as the line plot. The model shown on the left fits well, but the one on the right produces

two Gaussians right on top of each other that do not fit the data well.

The figure also gives you some idea of how to use the mixture model once it has been created.

The probability that input xi belongs to class m can be written as (where a hat on a variable (ˆ·)

means that we are estimating the value of that variable):

The problem is how to choose the weights αm. The common approach is to aim for the

maximum

likelihood solution (the likelihood is the conditional probability of the data given the model, and

85

the maximum likelihood solution varies the model to maximise this conditional probability). In

fact, it is common to compute the log likelihood and then to maximise that; it is guaranteed to be

negative, since probabilities are all less than 1, and the logarithm spreads out the values, making

the optimisation more effective. The algorithm that is used is an example of a very general one

known as the expectation- maximisation (or more compactly, EM) algorithm.

 The Expectation-Maximisation (EM) Algorithm

The basic idea of the EM algorithm is that sometimes it is easier to add extra variables that

are not actually known (called hidden or latent variables) and then to maximise the function over

those variables. This might seem to be making a problem much more complicated than it needs to

be, but it turns out for many problems that it makes finding the solution significantly easier.

In order to see how it works, we will consider the simplest interesting case of the Gaussian

mixture model: a combination of just two Gaussian mixtures. The assumption now is that sample

from that Gaussian. If the probability of picking Gaussian one is p, then the entire model looks

like this (where N(μ, σ2) specifies a Gaussian distribution with mean μ and standard deviation σ):

If the probability distribution of p is written as π, then the probability density is:

Finding the maximum likelihood solution (actually the maximum log likelihood) to this

problem is then a case of computing the sum of the logarithm of Equation over all of the

training data, and differentiating it, which would be rather difficult. Fortunately, there is a way

around it. The key insight that we need is that if we knew which of the two Gaussian

components the datapoint came from, then the computation would be easy. The mean and

standard deviation for each component could be computed from the datapoints that belong to that

component, and there would not be a problem. Although we don’t know which component

each datapoint came from, we can pretend we do, by introducing a new variable f. If f = 0

86

then the data came from Gaussian one, if f = 1 then it came from Gaussian two.

This is the typical initial step of an EM algorithm: adding latent variables. Now we just

need to work out how to optimise over them. This is the time when the reason for the algorithm

being called expectation-maximisation becomes clear.We don’t know much about variable f

(hardly surprising, since we invented it), but we can compute its expectation (that is, the value that

we ‘expect’ to see, which is the mean average) from the data:

where D denotes the data. Note that since we have set f = 1 this means that we are choosing

Gaussian two.

Computing the value of this expectation is known as the E-step. Then this estimate of the

expectation is maximised over the model parameters (the parameters of the two Gaussians and the

mixing parameter π), the M-step. This requires differentiating the expectation with respect to each

of the model parameters. These two steps are simply iterated until the algorithm converges. Note

that the estimate never gets any smaller, and it turns out that EM algorithms are guaranteed to reach

a local maxima. To see how this looks for the two-component Gaussian mixture, we’ll take a

closer look at the algorithm:

The trick with applying EM algorithms to problems is in identifying the correct latent

variables to include, and then simply working through the steps. They are very powerful methods

for a wide variety of statistical learning problems. We are now going to turn our attention to

something much simpler, which is how we can use information about nearby datapoints to decide

on classification output. For this we don’t use a model of the data at all, but directly use the data

87

that is available.

 Information Criteria

we introduced the idea of a validation set, or using cross-validation if there was not enough

data. However, this replaces data with computation time, as many models are trained on different

datasets.

An alternative idea is to identify some measure that tells us about how well we can expect

this trained model to perform. Probabilistic model selection (or “information criteria”) provides

an analytical technique for scoring and choosing among candidate models. Models are scored

both on their performance on the training dataset and based on the complexity of the model.There

are two such information criteria that are commonly used:

In these equations, k is the number of parameters in the model, N is the number of training

examples, and L is the best (largest) likelihood of the model. In both cases, based on the way that

they are written here, the model with the largest value is taken.

 Nearest neighbour methods Suppose that you are in a nightclub and decide to

dance. It is unlikely that you will know the dance moves for the particular song that is playing, so

you will probably try to work out what to do by looking at what the people close to you are doing.

The first thing you could do would be just to pick the person closest to you and copy them.

However, since most of the people who are in the nightclub are also unlikely to know all the

moves, you might decide to look at a few more people and do what most of them are doing. This

is pretty much exactly the idea behind nearest neighbour methods: if we don’t have a model that

describes the data, then the best thing to do is to look at similar data and choose to be in the same

class as them.

88

We have the datapoints positioned within input space, so we just need to work out which

of the training data are close to it. This requires computing the distance to each datapoint in the

training set, which is relatively expensive: if we are in normal Euclidean space, then we have to

compute d subtractions and d squarings (we can ignore the square root since we only want to know

which points are the closest, not the actual distance) and this has to be done O(N2) times. We can

then identify the k nearest neighbours to the test point, and then set the class of the test point to

be the most common one out of those for the nearest neighbours. The choice of k is not trivial.

Make it too small and nearest neighbour methods are sensitive to noise, too large and the accuracy

reduces as points that are too far away are considered. Some possible effects of changing the size

of k on the decision boundary are shown in below Figure 5.

FIGURE 5: The nearest neighbours decision boundary with left: one neighbour and right:

two neighbours.

This method suffers from the curse of dimensionality. First, as shown above, the

computational costs get higher as the number of dimensions grows. This is not as bad as it might

appear at first: there are sets of methods such as KD-Trees (will discuss in upcoming topics) that

compute this in O(N log N) time. However, more importantly, as the number of dimensions

increases, so the distance to other datapoints tends to increase. In addition, they can be far away

in a variety of different directions—there might be points that are relatively close in some

dimensions, but a long way in others. There are methods for dealing with these problems, known

as adaptive nearest neighbour methods, and there is a reference to them in the Further Reading

section at the end of the chapter.

89

The only part of this that requires any care during the implementation is what to do when

there is more than one class found in the closest points, but even with that the implementation is

nice and simple:

We are going to look next at how we can use these methods for regression, before we turn to the

question of how to perform the distance calculations as efficiently as possible, something that is

done simply but inefficiently in the code above. We will then consider briefly whether or not the

Euclidean distance is always the most useful way to calculate distances, and what alternatives

there are.

For the k-nearest neighbours algorithm the bias-variance decomposition can be computed as:

The way to interpret this is that when k is small, so that there are few neighbours considered, the

model has flexibility and can represent the underlying model well, but that it makes mistakes (has

high variance) because there is relatively little data. As k increases, the variance decreases, but at

the cost of less flexibility and so more bias.

 Nearest Neighbour Smoothing

Nearest neighbour methods can also be used for regression by returning the average value of the

90

neighbours to a point, or a spline or similar fit as the new value. The most common methods are

known as kernel smoothers, and they use a kernel (a weighting function between pairs of points)

that decides how much emphasis (weight) to put onto the contribution from each datapoint

according to its distance from the input.

Here we shall simply use two kernels that are used for smoothing. Both of these kernels

are designed to give more weight to points that are closer to the current input, with the weights

decreasing smoothly to zero as they pass out of the range of the current input, with the range

specified by a parameter λ.

Distance Measures

We have computed the distance between points as the Euclidean distance, which is

something that you learnt about in high school. However, it is not the only option, nor is it

necessarily the most useful. In this section we will look at the underlying idea behind distance

calculations and possible alternatives.

If I were to ask you to find the distance between my house and the nearest shop, then your

first guess might involve taking a map of my town, locating my house and the shop, and using a

ruler to measure the distance between them. By careful application of the map scale you can now

tell me how far it is. However, when I set out to buy some milk I’m liable to find that I have to

walk rather further than you’ve told me, since the direct line that you measured would involve

walking through (or over) several houses, and some serious fence-scaling. Your ‘as the crow flies’

distance is the shortest possible path, and it is the straight-line, or Euclidean, distance. You can

measure it on the map by just using a ruler, but it essentially consists of measuring the distance in

one direction (we’ll call it

north-south) and then the distance in another direction that is perpendicular to the first (let’s call

it east-west) and then squaring them, adding them together, and then taking the square root of that.

Writing that out, the Euclidean distance that we are all used to is:

where (x1, y1) is the location of my house in some coordinate system (say by using a GPS

tracker) and (x2, y2) is the location of the shop.

91

If I told you that my town was laid out on a grid block system, as is common in towns that

were built in the interval between the invention of the motor car and the invention of innovative

town planners, then you would probably use a different measure. You would measure the distance

between my house and the shop in the ‘north-south’ direction and the distance in the ‘east-west’

direction, and then add the two distances together. This would correspond to the distance I actually

had to walk. It is often known as the city-block or Manhattan distance and looks like:

The point of this discussion is to show that there is more than one way to measure a

distance, and that they can provide radically different answers. These two different distances can

be seen in Figure 11. Mathematically, these distance measures are known as metrics. A metric

function or norm takes two inputs and gives a scalar (the distance) back, which is positive, and 0

if and only if the two points are the same, symmetric (so that the distance

to the shop is the same as the distance back), and obeys the triangle inequality, which says that the

distance from a to b plus the distance from b to c should not be less than the direct distance from

a to c.

FIGURE 10: The Euclidean and city-block distances between two points.

Most of the data that we are going to have to analyse lives in rather more than two dimensions.

Fortunately, the Euclidean distance that we know about generalises very well to higher dimensions

(and so does the city-block metric). In fact, these two measures are both instances of a class of

metrics that work in any number of dimensions. The general measure is the Minkowski metric and

it is written as:

92

If we put k = 1 then we get the city-block distance (Equation (7.12)), and k = 2 gives the

Euclidean distance (Equation (7.11)). Thus, you might possibly see the Euclidean metric written

as the L2 norm and the city-block distance as the L1 norm. These norms have another interesting

feature. Remember that we can define different averages of a set of numbers. If we define the

average as the point that minimises the sum of the distance to every datapoint, then it turns out

that the mean minimises the Euclidean distance (the sum-of-squares distance), and the median

minimises the L1 metric.

There are plenty of other possible metrics to choose, depending upon the dataspace. We

generally assume that the space is flat (if it isn’t, then none of these techniques work, and we

don’t want to worry about that). However, it can still be beneficial to look at other metrics. Suppose

that we want our classifier to be able to recognise images, for example of faces. We take a set of

digital photos of faces and use the pixel values as features. Then we use the nearest neighbour

algorithm that we’ve just seen to identify each face. Even if we ensure that all of the photos are

taken fully face-on, there are still a few things that will get in the way of this method. One is that

slight variations in the angle of the head (or the camera) could make a difference; another is that

different distances between the face and the camera (scaling) will change the results; and another

is that different lighting conditions will make a difference. We can try to fix all of these things in

preprocessing, but there is also another alternative: use a different metric that is invariant to these

changes, i.e., it does not vary as they do. The idea of invariant metrics is to find measures that

ignore changes that you don’t want. So if you want to be able to rotate shapes around and still

recognize them, you need a metric that is invariant to rotation.

93

REINFORCEMENT LEARNING AND EVALUATING HYPOTHESES

Introduction, Learning Task, Q Learning, Non deterministic Rewards and actions, temporal-

difference learning, Relationship to Dynamic Programming, Active reinforcement learning,

Generalization in reinforcement learning.

Motivation, Basics of Sampling Theory: Error Estimation and Estimating Binomial Proportions,

The Binomial Distribution, Estimators, Bias, and Variance

Reinforcement learning addresses the question of how an autonomous agent that senses and acts

in its environment can learn to choose optimal actions to achieve its goals.

Introduction

 Consider building a learning robot. The robot, or agent, has a set of sensors to observe the

state of its environment, and a set of actions it can perform to alter this state.

 Its task is to learn a control strategy, or policy, for choosing actions that achieve its goals.

 The goals of the agent can be defined by a reward function that assigns a numerical value

to each distinct action the agent may take from each distinct state.

 This reward function may be built into the robot, or known only to an external

teacher who provides the reward value for each action performed by the robot.

 The task of the robot is to perform sequences of actions, observe their consequences, and

learn a control policy.

 The control policy is one that, from any initial state, chooses actions that maximize the

reward accumulated over time by the agent.

Example:

 A mobile robot may have sensors such as a camera and sonars, and actions such as "move

forward" and "turn."

 The robot may have a goal of docking onto its battery charger whenever its battery level is low.

 The goal of docking to the battery charger can be captured by assigning a positive reward (Eg.,

+100) to state-action transitions that immediately result in a connection to the charger

and a reward of zero to every other state-action transition.

94

Reinforcement Learning Problem

 An agent interacting with its environment. The agent exists in an environment described by

some set of possible states S.

 Agent perform any of a set of possible actions A. Each time it performs an action a, in some

state st the agent receives a real-valued reward r, that indicates the immediate value of this

state-action transition. This produces a sequence of states si, actions ai, and immediate

rewards ri as shown in the figure.

 The agent's task is to learn a control policy, 𝝅: S → A, that maximizes the expected sum

of these rewards, with future rewards discounted exponentially by their delay.

Reinforcement learning problem characteristics

1. Delayed reward: The task of the agent is to learn a target function 𝜋 that maps from the current

state s to the optimal action a = 𝜋 (s). In reinforcement learning, training information is not

available in (s, 𝜋 (s)). Instead, the trainer provides only a sequence of immediate reward values as

the agent executes its sequence of actions. The agent, therefore, faces the problem of temporal

credit assignment: determining which of the actions in its sequence are to be credited with

producing the eventual rewards.

2. Exploration: In reinforcement learning, the agent influences the distribution of training

examples by the action sequence it chooses. This raises the question of which experimentation

strategy produces most effective learning. The learner faces a trade-off in choosing whether to

favor exploration of unknown states and actions, or exploitation of states and actions that it has

95

already learned will yield high reward.

3. Partially observable states: The agent's sensors can perceive the entire state of the

environment at each time step, in many practical situations sensors provide only partial

information. In such cases, the agent needs to consider its previous observations together with its

current sensor data when choosing actions, and the best policy may be one that chooses actions

specifically to improve the observability of the environment.

4. Life-long learning: Robot requires to learn several related tasks within the same environment,

using the same sensors. For example, a mobile robot may need to learn how to dock on its battery

charger, how to navigate through narrow corridors, and how to pick up output from laser printers.

This setting raises the possibility of using previously obtained experience or knowledge to reduce

sample complexity when learning new tasks.

Learning Task

 Consider Markov decision process (MDP) where the agent can perceive a set S of distinct

states of its environment and has a set A of actions that it can perform.

 At each discrete time step t, the agent senses the current state st, chooses a current action at,

and performs it.

 The environment responds by giving the agent a reward rt = r(st, at) and by producing the

succeeding state st+l = δ(st, at). Here the functions δ(st, at) and r(st, at) depend only on the

current state and action, and not on earlier states or actions.

The task of the agent is to learn a policy, 𝝅: S → A, for selecting its next action a, based on

the current observed state st; that is, (st) = at.

How shall we specify precisely which policy π we would like the agent to learn?

1. One approach is to require the policy that produces the greatest possible cumulative reward

for the robot over time.

96

 To state this requirement more precisely, define the cumulative value Vπ (st) achieved by

following an arbitrary policy π from an arbitrary initial state st as follows:

 Where, the sequence of rewards rt+i is generated by beginning at state st and by repeatedly

using the policy π to select actions.

 Here 0 ≤ γ ≤ 1 is a constant that determines the relative value of delayed versus immediate

rewards. if we set γ = 0, only the immediate reward is considered. As we set γ closer to 1,

future rewards are given greater emphasis relative to the immediate reward.

 The quantity Vπ (st) is called the discounted cumulative reward achieved by policy π from

initial state s. It is reasonable to discount future rewards relative to immediate rewards

because, in many cases, we prefer to obtain the reward sooner rather than later.

2. Other definitions of total reward is finite horizon reward,

Considers the undiscounted sum of rewards over a finite number h of steps

3. Another approach is average reward

Considers the average reward per time step over the entire lifetime of the agent.

We require that the agent learn a policy π that maximizes Vπ (st) for all states s. such a policy

is called an optimal policy and denote it by π*

97

Refer the value function Vπ*(s) an optimal policy as V*(s). V*(s) gives the maximum

discounted cumulative reward that the agent can obtain starting from state s.

Example:

A simple grid-world environment is depicted in the diagram

 The six grid squares in this diagram represent six possible states, or locations, for the agent.

 Each arrow in the diagram represents a possible action the agent can take to move from one

state to another.

 The number associated with each arrow represents the immediate reward r(s, a) the agent

receives if it executes the corresponding state-action transition

 The immediate reward in this environment is defined to be zero for all state-action transitions

except for those leading into the state labelled G. The state G as the goal state, and the agent

can receive reward by entering this state.

Once the states, actions, and immediate rewards are defined, choose a value for the discount

factor γ, determine the optimal policy π * and its value function V*(s).

Let’s choose γ = 0.9. The diagram at the bottom of the figure shows one optimal policy for this setting.

98

Values of V*(s) and Q(s, a) follow from r(s, a), and the discount factor γ = 0.9. An

optimal policy, corresponding to actions with maximal Q values, is also shown.

The discounted future reward from the bottom centre state is

0+ γ 100+ γ2 0+ γ3 0+... = 90

Q LEARNING

How can an agent learn an optimal policy π * for an arbitrary environment?

The training information available to the learner is the sequence of immediate rewards

r(si,ai) for i = 0, 1,2, Given this kind of training information it is easier to learn a

numerical evaluation

function defined over states and actions, then implement the optimal policy in terms of this

evaluation function.

What evaluation function should the agent attempt to learn?

One obvious choice is V*. The agent should prefer state sl over state s2 whenever V*(sl) >

V*(s2), because the cumulative future reward will be greater from sl

The optimal action in state s is the action a that maximizes the sum of the immediate reward r(s,

a) plus the value V* of the immediate successor state, discounted by γ.

99

Estimating Hypothesis Accuracy

Sample Error –

The sample error of a hypothesis with respect to some sample S of instances drawn from

X is the fraction of S that it misclassifies.

Definition: The sample error (errors(h)) of hypothesis h with respect to target function f

and data sample S is

Where n is the number of examples in S, and the quantity δ(f(x), h(x)) is 1 if f (x) ≠

h(x), and 0 otherwise.

True Error –

The true error of a hypothesis is the probability that it will misclassify a single

randomly drawn instance from the distribution D.

Definition: The true error (errorD (h)) of hypothesis h with respect to target function f and

distribution D, is the probability that h will misclassify an instance drawn at random

according to D.

Confidence Intervals for Discrete-Valued Hypotheses

Suppose we wish to estimate the true error for some discrete valued hypothesis h, based on its

observed sample error over a sample S, where

 The sample S contains n examples drawn independent of one another, and independent

of h, according to the probability distribution D

 n ≥ 30

 Hypothesis h commits r errors over these n examples (i.e., errors (h) = r/n).

100

Under these conditions, statistical theory allows to make the following assertions:

1. Given no other information, the most probable value of errorD (h) is errors(h)

2. With approximately 95% probability, the true error errorD (h) lies in the interval

Example:

Suppose the data sample S contains n = 40 examples and that hypothesis h commits r = 12 errors

over this data.

 The sample error is errors(h) = r/n = 12/40 = 0.30

 Given no other information, true error is errorD (h) = errors(h), i.e., errorD (h) = 0.30

 With the 95% confidence interval estimate for errorD (h).

= 0.30 ± (1.96 * 0.07)

= 0.30 ± 0.14

3. A different constant, ZN, is used to calculate the N% confidence interval. The general

expression for approximate N% confidence intervals for errorD (h) is

Where,

101

The above equation describes how to calculate the confidence intervals, or error bars, for

estimates of errorD (h) that are based on errors(h)

Basics of Sampling Theory

 Error Estimation and Estimating Binomial Proportions

 Collect a random sample S of n independently drawn instances from the distribution D, and

then measure the sample error errors(h). Repeat this experiment many times, each time

drawing a different random sample Si of size n, we would expect to observe different values

for the various errorsi(h), depending on random differences in the makeup of the various Si.

We say that errorsi(h), the outcome of the ith such experiment, is a random variable.

 Imagine that we were to run k random experiments, measuring the random variables

errors1(h), errors2(h) . . . errorssk(h) and plotted a histogram displaying the frequency with

which each possible error value is observed.

 As k grows, the histogram would approach a particular probability distribution called the

Binomial distribution which is shown in below figure.

A Binomial distribution is defined by the probability function

102

If the random variable X follows a Binomial distribution, then:

 The probability Pr(X = r) that X will take on the value r is given by P(r)

The Binomial Distribution

Consider the following problem for better understanding of Binomial Distribution

 Given a worn and bent coin and estimate the probability that the coin will turn up heads

when tossed.

 Unknown probability of heads p. Toss the coin n times and record the number of times r

that it turns up heads.

Estimate of p = r / n

 If the experiment were rerun, generating a new set of n coin tosses, we might expect the

number of heads r to vary somewhat from the value measured in the first experiment,

yielding a somewhat different estimate for p.

 The Binomial distribution describes for each possible value of r (i.e., from 0 to n), the

probability of observing exactly r heads given a sample of n independent tosses of a coin

whose true probability of heads is p.

The general setting to which the Binomial distribution applies is:

1. There is a base experiment (e.g., toss of the coin) whose outcome can be described by a random

variable ‘Y’. The random variable Y can take on two possible values (e.g., Y = 1 if heads, Y = 0

if tails).

2. The probability that Y = 1 on any single trial of the base experiment is given by some constant

p, independent of the outcome of any other experiment. The probability that Y = 0 is therefore (1

103

- p). Typically, p is not known in advance, and the problem is to estimate it.

3. A series of n independent trials of the underlying experiment is performed (e.g., n independent

coin tosses), producing the sequence of independent, identically distributed random variables Y1,

Y2, . . . , Yn. Let R denote the number of trials for which Yi = 1 in this series of n experiments

4. The probability that the random variable R will take on a specific value r (e.g., the

probability of observing exactly r heads) is given by the Binomial distribution

Mean, Variance and Standard Deviation

The Mean (expected value) is the average of the values taken on by repeatedly sampling the

random variable

Definition: Consider a random variable Y that takes on the possible values y1, . . . yn. The

expected value (Mean) of Y, E[Y], is

The Variance captures how far the random variable is expected to vary from its mean value.

Definition: The variance of a random variable Y, Var[Y], is

The variance describes the expected squared error in using a single observation of Y to

estimate its mean E[Y].

The square root of the variance is called the standard deviation of Y, denoted σy

104

Definition: The standard deviation of a random variable Y, σy, is

In case the random variable Y is governed by a Binomial distribution, then the Mean, Variance

and standard deviation are given by

Estimators, Bias, and Variance

Let us describe errors(h) and errorD(h) using the terms in Equation (1) defining the

Binomial distribution. We then have

Where,

 n is the number of instances in the sample S,

 r is the number of instances from S misclassified by h

 p is the probability of misclassifying a single instance drawn from D

 Estimator:

errors(h) an estimator for the true error errorD(h): An estimator is any random variable

used to estimate some parameter of the underlying population from which the sample is

drawn

 Estimation bias: is the difference between the expected value of the estimator and the true

value of the parameter.

105

GENETIC ALGORITHMS

Motivation, Genetic Algorithms: Representing Hypotheses, Genetic Operator, Fitness Function

and Selection, An Illustrative Example, Hypothesis Space Search, Genetic Programming,

Models of Evolution and Learning: Lamarkian Evolution, Baldwin Effect, Parallelizing Genetic

Algorithms.

Motivation

Genetic algorithms (GAS) provide a learning method motivated by an analogy to biological

evolution. Rather than search from general-to-specific hypotheses, or from simple-to-complex,

GAS generate successor hypotheses by repeatedly mutating and recombining parts of the best

currently known hypotheses. At each step, a collection of hypotheses called the current population

is updated by replacing some fraction of the population by offspring of the most fit current

hypotheses. The process forms a generate-and-test beam-search of hypotheses, in which variants

of the best current hypotheses are most likely to be considered next. The popularity of GAS is

motivated by a number of factors including:

 Evolution is known to be a successful, robust method for adaptation within biological systems.

 GAS can search spaces of hypotheses containing complex interacting parts, where the

impact of each part on overall hypothesis fitness may be difficult to model.

 Genetic algorithms are easily parallelized and can take advantage of the decreasing

costs of powerful computer hardware.

9.2 Genetic Algorithms

The problem addressed by GAS is to search a space of candidate hypotheses to identify

the best hypothesis. In GAS the "best hypothesis" is defined as the one that optimizes a predefined

numerical measure for the problem at hand, called b the hypothesis fitness. For example, if the

learning task is the problem of approximating an unknown function given training examples of its

input and output, then fitness could be defined as the accuracy of the hypothesis over this training

data. If the task is to learn a strategy for playing chess, fitness could be defined as the number of

games won by the individual when playing against other individuals in the current population.

Although different implementations of genetic algorithms vary in their details, they typically share

the following structure: The algorithm operates by iteratively updating a pool of hypotheses, called

106

the population. On each iteration, all members of the population are evaluated according to the

fitness function. A new population is then generated by probabilistically selecting the fit

individuals from the current population. Some of these selected individuals are carried forward

into the next generation population intact. Others are used as the basis for creating new offspring

individuals by applying genetic operations such as crossover and mutation.

The inputs to this algorithm include the fitness function for ranking candidate hypotheses,

a threshold defining an acceptable level of fitness for terminating the algorithm, the size of the

population to be maintained, and parameters that determine how successor populations are to be

generated: the fraction of the population to be replaced at each generation and the mutation rate.

Notice in this algorithm each iteration through the main loop produces a new generation of

hypotheses based on the current population. First, a certain number of hypotheses from the current

population are selected for inclusion in the next generation. These are selected probabilistically,

where the probability of selecting hypothesis hi is given by

107

Thus, the probability that a hypothesis will be selected is proportional to its own fitness

and is inversely proportional to the fitness of the other competing hypotheses in the current

population.

Once these members of the current generation have been selected for inclusion in the next

generation population, additional members are generated using a crossover operation. Crossover,

defined in detail in the next section, takes two parent hypotheses from the current generation and

creates two offspring hypotheses

by recombining portions of both parents. The parent hypotheses are chosen probabilistically from

the current population, again using the probability function given by Equation (9.1). After new

members have been created by this crossover operation, the new generation population now

contains the

desired number of members. At this point, a certain fraction m of these members are chosen at

random, and random mutations all performed to alter these members.

This GA algorithm thus performs a randomized, parallel beam search for hypotheses that perform

well according to the fitness function. In the following subsections, we describe in more detail the

representation of hypotheses and genetic operators used in this algorithm.

Representing Hypotheses

Hypotheses in GAS are often represented by bit strings, so that they can be easily

manipulated by genetic operators such as mutation and crossover. The hypotheses represented by

these bit strings can be quite complex. For example, sets of if-then rules can easily be represented

in this way, by choosing an encoding of rules that allocates specific substrings for each rule

precondition and postcondition.

To see how if-then rules can be encoded by bit strings, .first consider how we might use a

bit string to describe a constraint on the value of a single attribute. To pick an example, consider

the attribute Outlook, which can take on any of the three values Sunny, Overcast, or Rain. One

108

obvious way to represent a constraint on Outlook is to use a bit string of length three, in which

each bit position corresponds to one of its three possible values. Placing a 1 in some position

indicates that the attribute is allowed to take on the corresponding value. For example, the string

010 represents the constraint that Outlook must take on the second of these values, or Outlook =

Overcast. Similarly, the string 011 represents the more general constraint that allows two possible

values, or (Outlook = Overcast v Rain). Note 11 1 represents the most general possible constraint,

indicating that we don't care which of its possible values the attribute takes on.

Given this method for representing constraints on a single attribute, conjunctions of

constraints on multiple attributes can easily be represented by concatenating the corresponding bit

strings. For example, consider a second attribute, Wind, that can take on the value Strong or Weak.

A rule precondition such as

(Outlook = Overcast ^Rain) A (Wind = Strong)

can then be represented by the following bit string of length five:

Outlook Wind

01 1 10

Rule postconditions (such as PlayTennis = yes) can be represented in a similar fashion. Thus,

an entire rule can be described by concatenating the bit strings describing the rule preconditions,

together with the bit string describing the rule postcondition. For example, the rule

IF Wind = Strong THEN PlayTennis = yes

would be represented by the string

Outlook Wind PlayTennis

111 10 10

where the first three bits describe the "don't care" constraint on Outlook, the next two bits

describe the constraint on Wind, and the final two bits describe the rule postcondition

109

can take on the values Yes or No). Note the bit string representing the rule contains a substring for

each attribute in the hypothesis space, even if that attribute is not constrained by the rule

preconditions. This yields a fixed length bit-string representation for rules, in which substrings at

specific locations describe constraints on specific attributes. Given this representation for single

rules, we can represent sets of rules by similarly concatenating the bit string representations of the

individual rules.

In designing a bit string encoding for some hypothesis space, it is useful to arrange for every

syntactically legal bit string to represent a well-defined hypothesis. To illustrate, note in the rule

encoding in the above paragraph the bit string 11 1 10 11 represents a rule whose postcondition

does not constrain the target attribute PlayTennis. If we wish to avoid considering this hypothesis,

we may employ a different encoding (e.g., allocate just one bit to the PlayTennis postcondition to

indicate whether the value is Yes or No), alter the genetic operators so that they explicitly avoid

constructing such bit strings, or simply assign a very low fitness to such bit strings.

In some GAS, hypotheses are represented by symbolic descriptions rather than bit strings.

Genetic Operators

The generation of successors in a GA is determined by a set of operators that recombine

and mutate selected members of the current population. These operators correspond to idealized

versions of the genetic operations found in biological evolution. The two most common

operators are crossover and mutation.

The crossover operator produces two new offspring from two parent strings, by copying

selected bits from each parent. The bit at position i in each offspring is copied from the bit at

position i in one of the two parents. The choice of which parent contributes the bit for position i is

determined by an additional string called the crossover mask. To illustrate, consider the single-

point crossover operator at the top of Table Consider the topmost of the two offspring in this case.

This offspring takes its first five bits from the first parent and its remaining six bits from the second

parent, because the crossover mask 11 11 1000000 specifies these choices for each of the bit

positions. The second offspring uses the same crossover mask, but switches the roles of the two

parents. Therefore, it contains the bits that were not used by the first offspring. In single-point

110

crossover, the crossover mask is always constructed so that it begins with a string containing n

contiguous Is, followed by the necessary number of 0s to complete the string. This results in

offspring in which the first n bits are contributed by one parent and the remaining bits by the

second parent. Each time the single-point crossover operator is applied the crossover point n is

chosen at random, and the crossover mask is then created and applied.

111

In two-point crossover, offspring are created by substituting intermediate segments of one parent

into the middle of the second parent string. Put another way, the crossover mask is a string

beginning with no zeros, followed by a contiguous string of nl ones, followed by the necessary

number of zeros to complete the string. Each time the two-point crossover operator is applied, a

mask is generated by randomly choosing the integers no and nl.

Fitness Function and Selection

The fitness function defines the criterion for ranking potential hypotheses and for

probabilistically selecting them for inclusion in the next generation population. If the task is to

learn classification rules, then the fitness function typically has a component that scores the

classification accuracy of the rule over a set of provided training examples. Often other criteria

may be included as well, such as the complexity or generality of the rule. More generally, when

the bit-string hypothesis is interpreted as a complex procedure (e.g., when the bit string represents

a collection of if-then rules that will be chained together to control a robotic device), the fitness

112

function may measure the overall performance of the resulting procedure rather than performance

of individual rules.

In our prototypical GA shown in above Table , the probability that a hypothesis will be selected

is given by the ratio of its fitness to the fitness of other members of the current population as seen

in Equation above . This method is sometimes called fitness proportionate selection, or roulette

wheel selection. Other methods for using fitness to select hypotheses have also been proposed.

For example, in tournament selection, two hypotheses are first chosen at random from the current

population. With some predefined probability p the more fit of these two is then selected, and with

probability (1 - p) the less fit hypothesis is selected. Tournament selection often yields a more

diverse population than fitness proportionate selection. In another method called rank selection,

the hypotheses in the current population are first sorted by fitness. The probability that a

hypothesis will be selected is then proportional to its rank in this sorted list, rather than its fitness.

5.3. An Illustrative Example

A genetic algorithm can be viewed as a general optimization method that searches a large

space of candidate objects seeking one that performs best according to the fitness function.

Although not guaranteed to find an optimal object, GAS often succeed in finding an object with

high fitness. GAS have been applied to a number of optimization problems outside machine

learning, including problems such as circuit layout and job-shop scheduling. Within machine

learning, they have been applied both to function-approximation problems and to tasks such as

choosing the network topology for artificial neural network learning systems.

To illustrate the use of GAS for concept learning, we briefly summarize the GABIL system

described by DeJong et al. (1993). GABIL uses a GA to learn boolean concepts represented by a

disjunctive set of propositional rules. In experiments over several concept learning problems,

GABIL was found to be roughly comparable in generalization accuracy to other learning

algorithms such as the decision tree learning algorithm C4.5 and the rule learning system AQ14.

The learning tasks in this study included both artificial learning tasks designed to explore the

systems' generalization accuracy and the real world problem of breast cancer diagnosis.

The specific instantiation of the GA algorithm in GABIL can be summarized as follows:

Representation. Each hypothesis in GABIL corresponds to a disjunctive set of propositional

rules, encoded as described in Section 9.2.1. In particular, the hypothesis space of rule

preconditions consists of a conjunction of constraints on a fixed set of attributes, as described in

that earlier section. To represent a set of rules, the bit-string representations of individual rules are

113

concatenated. To illustrate, consider a hypothesis space in which rule preconditions are

conjunctions of constraints over two Boolean attributes, a1 and a2.The rule postcondition is

described by a single bit that indicates the predicted value of the target attribute c. Thus, the

hypothesis consisting of the two rules

IF al=T^a2=F THEN c=T; IF a2=T THEN c=F

would be represented by the string

a1 a2 c a1 a2 c

10 01 1 11 01 0

Note the length of the bit string grows with the number of rules in the hypothesis. This variable

bit- string length requires a slight modification to the crossover operator, as described below.

Genetic operators. GABIL uses the standard mutation operator of above Table in which a

single bit is chosen at random and replaced by its complement. The crossover operator that it uses

is a fairly standard extension to the two-point crossover operator described in Table 9.2. In

particular, to accommodate the variable-length bit strings that encode rule sets, and to constrain

the system so that crossover occurs only between like sections of the bit strings that encode rules,

the following approach is taken. To perform a crossover operation on two parents, two crossover

points are first chosen at random in the first parent string. Let dl (dz) denote the distance from the

leftmost (rightmost) of these two crossover points to the rule boundary immediately to its left. The

crossover points in the second parent are now randomly chosen, subject to the constraint that they

must have the same dl and d2 value. For example, if the two parent strings are

and the crossover points chosen for the first parent are the points following bit positions 1 and 8,

114

where "[" and "1" indicate crossover points, then dl = 1 and dz = 3. Hence the allowed pairs of

crossover points for the second parent include the pairs of bit positions (1,3), (1,8), and (6,8). If

the pair (1,3) happens to be chosen,

then the two resulting offspring will be

As this example illustrates, this crossover operation enables offspring to contain a different

number of rules than their parents, while assuring that all bit strings generated in this fashion

represent well- defined rule sets.

Fitness function. The fitness of each hypothesized rule set is based on its classification

accuracy over the training data. In particular, the function used to measure fitness is

where correct (h) is the percent of all training examples correctly classified by hypothesis h.

In experiments comparing the behavior of GABIL to decision tree learning algorithms

such as C4.5 and ID5R, and to the rule learning algorithm AQ14report roughly comparable

performance among these systems, tested on a variety of learning problems. For example, over a

set of 12 synthetic problems, GABIL achieved an average generalization accuracy of 92.1 %,

whereas the performance of the other systems ranged from 91.2 % to 96.6 %.

115

Extensions

In one set of experiments they explored the addition of two new genetic operators that

were motivated by the generalization operators common in many symbolic learning methods. The

first of these operators, AddAlternative, generalizes the constraint on a specific attribute by

changing a 0 to a 1 in the substring corresponding to the attribute. For example, if the constraint

on an attribute is represented by the string 10010, this operator might change it to 101 10. This

operator was applied with probability .O1 to selected members of the population on each

generation. The second operator, Dropcondition performs a more drastic generalization step, by

replacing all bits for a particular attribute by a 1. This operator corresponds to generalizing the rule

by completely dropping the constraint on the attribute, and was applied on each generation with

probability .60. The authors report this revised system achieved an average performance of 95.2%

over the above set of synthetic learning tasks, compared to 92.1% for the basic GA algorithm.

In the above experiment, the two new operators were applied with the same probability to each

hypothesis in the population on each generation. In a second experiment, the bit-string

representation for hypotheses was extended to include two bits that determine which of these

operators may be applied to the hypothesis. In this extended representation, the bit string for a

typical rule set hypothesis would be

where the final two bits indicate in this case that the AddAlternative operator may be applied to

this bit string, but that the Dropcondition operator may not. These two new bits define part of the

search strategy used by the GA and are themselves altered and evolved using the same crossover

and mutation operators that operate on other bits in the string. While the authors report mixed

results with this approach (i.e., improved performance on some problems, decreased performance

on others), it provides an interesting illustration of how GAS might in principle be used to evolve

their own hypothesis search methods.

Hypothesis Space Search

As illustrated above, GAS employ a randomized beam search method to seek a maximally fit

116

hypothesis. This search is quite different from that of other learning methods we have considered

in this book. To contrast the hypothesis space search of GAS with that of neural network

BACKPROPAGATION, for example, the radiant descent search in BACKPROPAGATION

moves smoothly from one hypothesis to a new hypothesis that is very similar. In contrast, the GA

search can move much more abruptly, replacing a parent hypothesis by an offspring that may be

radically different from the parent. Note the GA search is therefore less likely to fall into the same

kind of local minima that can plague gradient descent methods.

One practical difficulty in some GA applications is the problem of crowding. Crowding is a

phenomenon in which some individual that is more highly fit than others in the population quickly

reproduces, so that copies of this individual and very similar individuals take over a large fraction

of the population. The negative impact of crowding is that it reduces the diversity of the

population, thereby slowing further progress by the GA. Several strategies have been explored for

reducing crowding. One approach is to alter the selection function, using criteria such as

tournament selection or rank selection in place of fitness proportionate roulette wheel selection.

A related strategy is "fitness sharing," in which the measured fitness of an individual is reduced

by the presence of other, similar individuals in the population. A third approach is to restrict the

kinds of individuals allowed to recombine to form offspring. For example, by allowing only the

most similar individuals to recombine, we can encourage the formation of clusters of similar

individuals, or multiple "subspecies" within the population. A related approach is to spatially

distribute individuals and allow only nearby individuals to recombine. Many of these techniques

are inspired by the analogy to biological evolution.

Population Evolution and the Schema Theorem

It is interesting to ask whether one can mathematically characterize the evolution over time of the

population within a GA. The schema theorem provides one such characterization. It is based on

the concept of schemas, or patterns that describe sets of bit strings. To be precise, a schema is any

string composed of 0s, 1s, and *'s. Each schema represents the set of bit strings containing the

indicated 0s and 1s, with each “*” interpreted as a "don't care." For example, the schema 0*10

represents the set of bit strings that includes exactly 0010 and 01 10.

An individual bit string can be viewed as a representative of each of the different schemas that it

matches. For example, the bit string 0010 can be thought of as a representative of 24 distinct

schemas including 00**, 0* 10, ****, etc. Similarly, a population of bit strings can be viewed in

117

p

terms of the set of schemas that it represents and the number of individuals associated with each

of these schema.

The schema theorem characterizes the evolution of the population within a GA in terms of the

number of instances representing each schema. Let m(s, t) denote the number of instances of

schema s in the population at time t (i.e., during the tth generation). The schema theorem describes

the expected value of m(s,t+1) in terms of m(s, t) and other properties of the schema, population,

and GA algorithm parameters.

The evolution of the population in the GA depends on the selection step, the recombination step,

and the mutation step. Let us start by considering just the effect of the selection step. Let f (h)

denote the

…

fitness of the individual bit string h and f t denote the average fitness of all individuals in the

population at time t. Let n be the total number of individuals in the population. Let h s , indicate

t

that the individual h is both a representative of schema s and a member of the population at

time t. Finally, let u s, t denote the average fitness of instances of schema s in the population at

time t.

We are interested in calculating the expected value of m(s,t+1), which we denote E[m(s,t+1)]. We can

calculate E[m(s,t+1)] using the probability distribution for selection given in Equation,

which can be restated using our current terminology as follows

Now if we select one member for the new population according to this probability distribution,

then the probability that we will select a representative of schema s is

118

The second step above follows from the fact that by definition,

Equation gives the probability that a single hypothesis selected by the GA will be an instance of schema

s. Therefore, the expected number of instances of s resulting from the n independent selection

steps that create the entire new generation is just n times this probability.

Equation states that the expected number of instances of schema s at generation t+1 is proportional to

the average fitness u s, t of instances of this schema at time t , and inversely proportional to the

…

average fitness f t of all members of the population at time t. Thus, we can expect schemas with

above average fitness to be represented with increasing frequency on successive generations. If

we view the GA as performing a virtual parallel search through the space of possible schemas at

the same time it performs its explicit parallel search through the space of individuals, then

Equation indicates that more fit schemas will grow in influence over time.

While the above analysis considered only the selection step of the GA, the crossover and mutation

steps must be considered as well. The schema theorem considers only the possible negative

119

influence of these genetic operators (e.g., random mutation may decrease the number of

representatives of s,

independent of u s, t and considers only the case of single-point crossover. The full schema

theorem thus provides a lower bound on the expected frequency of schema s, as follows:

Here, pc is the probability that the single-point crossover operator will be applied

to an arbitrary individual, and pm, is the probability that an arbitrary bit of an arbitrary individual

will be mutated by the mutation operator. o(s) is the number of defined bits in schema s, where 0

and 1 are defined bits, but * is not. d(s) is the distance between the leftmost and rightmost defined

bits in s. Finally, l is the length of the individual bit strings in the population. Notice the leftmost

term in Equation is identical to the term from Equation and describes the effect of the selection

step. The middle term describes the effect of the single-point crossover operator-in particular, it

describes the probability that an arbitrary individual representing s will still represent s following

application of this crossover operator. The rightmost term describes the probability that an

arbitrary individual representing schema s will still represent schema s following application of

the mutation operator. Note that the effects of single-point crossover and mutation increase with

the number of defined bits o(s) in the schema and with the distance d(s) between the defined bits.

Thus, the schema theorem can be roughly interpreted as stating that more fit schemas will tend to

grow in influence, especially schemas containing a small number of defined bits (i.e., containing

a large number of *'s), and especially when these defined bits

 are near one another within the bit string. The schema theorem is perhaps the most widely cited characterization of

population evolution within a GA. One way in which it is incomplete is that it fails to consider the (presumably) positive

effects of crossover and mutation. Numerous more recent theoretical analyses have been proposed, including analyses

based on Markov chain models and on statistical mechanics models.

GENETIC PROGRAMMING

Genetic programming (GP) is a form of evolutionary computation in which the individuals in the

evolving population are computer programs rather than bit strings. The basic genetic programming

approach and presents a broad range of simple programs that can be successfully learned by GP.

120

Representing Programs

Programs manipulated by a GP are typically represented by trees corresponding to the parse tree

of the program. Each function call is represented by a node in the tree, and the arguments to the

function are given by its descendant nodes. For example, below Figure illustrates this tree

representation for the

function sin(x) + x
2

 y . To apply genetic programming to a particular domain, the user must

define the primitive functions to be considered (e.g., sin, cos, , +, -, exponential~), as well as

the terminals

(e.g., x, y, constants such as 2). The genetic programming algorithm then uses an evolutionary

search to explore the vast space of programs that can be described using these primitives. As in a

genetic algorithm, the prototypical genetic programming algorithm maintains a population of

individuals (in this case, program trees). On each iteration, it produces a new generation of

individuals using selection, crossover, and mutation. The fitness of a given individual program in

the population is typically determined by executing the program on a set of training data.

Crossover operations are performed by replacing a randomly chosen subtree of one parent

program by a subtree from the other parent program.

121

Above Figure illustrates a typical crossover operation. It describes a set of experiments

applying a GP to a number of applications. In his experiments, 10% of the current population,

selected probabilistically according to fitness, is retained unchanged in the next generation. The

remainder of the new generation is created by applying crossover to pairs of programs from the

current generation, again selected probabilistically according to their fitness. The mutation

operator was not used in this particular set of experiments.

Illustrative Example

One illustrative example presented by Koza (1992) involves learning an algorithm for stacking

the blocks shown in below Figure The task is to develop a general algorithm for stacking the blocks

into a single stack that spells the word "universal," independent of the initial configuration of

blocks in the world. The actions available for manipulating blocks allow moving only a single

block at a time. In particular, the top block on the stack can be moved to the table surface, or a

block on the table surface can be moved to the top of the stack.

122

As in most GP applications, the choice of problem representation has a significant impact on

the ease of solving the problem. In Koza's formulation, the primitive functions used to compose

programs for this task include the following three terminal arguments:

 CS (current stack), which refers to the name of the top block on the stack, or F if

there is no current stack.

 TB (top correct block), which refers to the name of the topmost block on the stack, such

that it and those blocks beneath it are in the correct order.

 NN (next necessary), which refers to the name of the next block needed above TB in

the stack, in order to spell the word "universal," or F if no more blocks are needed.

As can be seen, this particular choice of terminal arguments provides a natural representation for

describing programs for manipulating blocks for this task. Imagine, in contrast, the relative

difficulty of the task if we were to instead define the terminal arguments to be the x and y

coordinates of each block.

In addition to these terminal arguments, the program language in this application included the

following primitive functions:

 (MS x) (move to stack), if block x is on the table, this operator moves x to the top of

the stack and returns the value T. Otherwise, it does nothing and returns the value F.

 (MT x) (move to table), if block x is somewhere in the stack, this moves the block at

the top of the stack to the table and returns the value T. Otherwise, it returns the value F.

 (EQ x y) (equal), which returns T if x equals y, and returns F otherwise.

 (NOT x), which returns T if x = F, and returns F if x = T.

 (DU x y) (do until), which executes the expression x repeatedly until expressiony

123

returns the value T.

To allow the system to evaluate the fitness of any given program, Koza provided a set of 166

training example problems representing a broad variety of initial block configurations, including

problems of differing degrees of difficulty. The fitness of any given program was taken to be the

number of these examples solved by the algorithm. The population was initialized to a set of 300

random programs. After 10 generations, the system discovered the following program, which

solves all 166 problems.

(EQ (DU (MT CS)(NOT CS)) (DU (MS NN)(NOT NN)))

Notice this program contains a sequence of two DU, or "Do Until" statements. The first repeatedly

 moves the current top of the stack onto the table, until the stack becomes empty. The second "Do Until" statement

then repeatedly moves the next necessary block from the table onto the stack. The role played by the top level EQ

expression here is to provide a syntactically legal way to sequence these two "Do Until" loops.

Somewhat surprisingly, after only a few generations, this GP was able to discover a program that

solves all 166 training problems. Of course the ability of the system to accomplish this depends

strongly on the primitive arguments and functions provided, and on the set of training example

cases used to evaluate fitness.

Remarks on Genetic Programming

As illustrated in the above example, genetic programming extends genetic algorithms to

the evolution of complete computer programs. Despite the huge size of the hypothesis space it

must search, genetic programming has been demonstrated to produce intriguing results in a

number of applications. A comparison of GP to other methods for searching through the space of

computer programs, such as hillclimbing and simulated annealing, is given by O'Reilly and

Oppacher (1994).

While the above example of GP search is fairly simple, Koza et al. (1996) summarize the use of a

GP in several more complex tasks such as designing electronic filter circuits and classifying

segments of protein molecules. The filter circuit design problem provides an example of a

considerably more complex problem. Here, programs are evolved that transform a simple fixed

seed circuit into a final circuit design. The primitive functions used by the GP to construct its

124

programs are functions that edit the seed circuit by inserting or deleting circuit components and

wiring connections. The fitness of each program is calculated by simulating the circuit it outputs

(using the SPICE circuit simulator) to determine how closely this circuit meets the design

specifications for the desired filter. More precisely, the fitness score is the sum of the magnitudes

of errors between the desired and actual circuit output at 101 different input frequencies. In this

case, a population of size 640,000 was maintained, with selection producing 10% of the successor

population, crossover producing 89%, and mutation producing 1%. The system was executed on

a 64-node parallel processor. Within the first randomly generated population, the circuits produced

were so unreasonable that the SPICE simulator could not even simulate the behavior of 98% of

the circuits. The percentage of unsimulatable circuits dropped to 84.9% following the first

generation, to 75.0% following the second generation, and to an average of 9.6% over succeeding

generations. The fitness score of the best circuit in the initial population was 159, compared to a

score of 39 after 20 generations and a score of 0.8 after 137 generations. The best circuit, produced

after 137 generations, exhibited performance very similar to the desired behavior.

In most cases, the performance of genetic programming depends crucially on the choice of

representation and on the choice of fitness function. For this reason, an active area of current

research is aimed at the automatic discovery and incorporation of subroutines that improve on the

original set of primitive functions, thereby allowing the system to dynamically alter the primitives

from which it constructs individuals. See, for example, Koza (1994).

Models of Evolution and Learning

In many natural systems, individual organisms learn to adapt significantly during their

lifetime. At the same time, biological and social processes allow their species to adapt over a time

frame of many generations. One interesting question regarding evolutionary systems is "What is

the relationship between learning during the lifetime of a single individual, and the longer time

frame species-level learning afforded by evolution?'

Lamarckian Evolution

Larnarck was a scientist who, in the late nineteenth century, proposed that evolution over

many generations was directly influenced by the experiences of individual organisms during their

lifetime. In

125

particular, he proposed that experiences of a single organism directly affected the genetic makeup

of their offspring: If an individual learned during its lifetime to avoid some toxic food, it could

pass this trait on genetically to its offspring, which therefore would not need to learn the trait. This

is an attractive conjecture, because it would presumably allow for more efficient evolutionary

progress than a generate-and-test process (like that of GAS and GPs) that ignores the experience

gained during an individual's lifetime. Despite the attractiveness of this theory, current scientific

evidence overwhelmingly contradicts Lamarck's model. The currently accepted view is that the

genetic makeup of an individual is, in fact, unaffected by the lifetime experience of one's

biological parents. Despite this apparent biological fact, recent computer studies have shown that

Lamarckian processes can sometimes improve the effectiveness of computerized genetic

algorithms (see Grefenstette 1991; Ackley and Littman 1994; and Hart and Belew 1995).

Baldwin Effect

Although Lamarckian evolution is not an accepted model of biological evolution, other

mechanisms have been suggested by which individual learning can alter the course of evolution.

One such mechanism is called the Baldwin effect, after J. M. Baldwin (1896), who first suggested

the idea. The Baldwin effect is based on the following observations:

 If a species is evolving in a changing environment, there will be evolutionary pressure to

favor individuals with the capability to learn during their lifetime. For example, if a new

predator appears in the environment, then individuals capable of learning to avoid the

predator will be more successful than individuals who cannot learn. In effect, the ability

to learn allows an individual to perform a small local search during its lifetime to maximize

its fitness. In contrast, nonlearning individuals whose fitness is fully determined by their

genetic makeup will operate at a relative disadvantage.

 Those individuals who are able to learn many traits will rely less strongly on their genetic

code to "hard-wire" traits. As a result, these individuals can support a more diverse gene

pool, relying on individual learning to overcome the "missing" or "not quite optimized"

traits in the genetic code. This more diverse gene pool can, in turn, support more rapid

evolutionary adaptation. Thus, the ability of individuals to learn can have an indirect

accelerating effect on the rate of evolutionary adaptation for the entire population.

To illustrate, imagine some new change in the environment of some species, such as a new

126

predator. Such a change will selectively favor individuals capable of learning to avoid the predator.

As the proportion of such self-improving individuals in the population grows, the population will

be able to support a more diverse gene pool, allowing evolutionary processes (even non-

Lamarckian generate- and-test processes) to adapt more rapidly. This accelerated adaptation may

in turn enable standard evolutionary processes to more quickly evolve a genetic (nonlearned) trait

to avoid the predator (e.g., an instinctive fear of this animal). Thus, the Baldwin effect provides

an indirect mechanism for individual learning to positively impact the rate of evolutionary

progress. By increasing survivability and genetic diversity of the species, individual learning

supports more rapid evolutionary progress, thereby increasing the chance that the species will

evolve genetic, nonlearned traits that better fit the new environment.

There have been several attempts to develop computational models to study the Baldwin

effect. For example, Hinton and Nowlan (1987) experimented with evolving a population of

simple neural networks, in which some network weights were fixed during the individual network

"lifetime," while others were trainable. The genetic makeup of the individual determined

which weights were trainable and which were fixed. In their experiments, when no individual

learning was allowed, the population failed to improve its fitness over time. However, when

individual learning was allowed, the population quickly improved its fitness. During early

generations of evolution the population contained a greater proportion of individuals with many

trainable weights. However, as evolution proceeded, the number of fixed, correct network weights

tended to increase, as the population evolved toward genetically given weight values and toward

less dependence on individual learning of weights. Additional computational studies of the

Baldwin effect have been reported by Belew (1990), Harvey (1993), and French and Messinger

(1994). An excellent overview of this topic can be found in Mitchell (1996). A special issue of the

journal Evolutionary Computation on this topic (Turney et al. 1997) contains several articles on

the Baldwin effect.

Parallelizing Genetic Algorithms

GAS are naturally suited to parallel implementation, and a number of approaches to

parallelization have been explored. Coarse grain approaches to parallelization subdivide the

population into somewhat distinct groups of individuals, called demes. Each deme is assigned to

a different computational node, and a standard GA search is performed at each node.

Communication and cross- fertilization between demes occurs on a less frequent basis than within

127

demes. Transfer between demes occurs by a migration process, in which individuals from one

deme are copied or transferred to other demes. This process is modeled after the kind of cross-

fertilization that might occur between physically separated subpopulations of biological species.

One benefit of such approaches is that it reduces the crowding problem often encountered in

nonparallel GAS, in which the system falls into a local optimum due to the early appearance of a

genotype that comes to dominate the entire population. Examples of coarse-grained parallel GAS

are described by Tanese (1989) and by Cohoon et al. (1987).

In contrast to coarse-grained parallel implementations of GAS, fine-grained

implementations typically assign one processor per individual in the population. Recombination

then takes place among neighboring individuals. Several different types of neighborhoods have

been proposed, ranging from planar grid to torus. Examples of such systems are described by

Spiessens and Manderick (1991). An edited collection of papers on parallel GAS is available in

Stender (1993).

